8 research outputs found
Aberrant Large-Scale Network Interactions Across Psychiatric Disorders Revealed by Large-Sample Multi-Site Resting-State Functional Magnetic Resonance Imaging Datasets
Background and Hypothesis
Dynamics of the distributed sets of functionally synchronized brain regions, known as large-scale networks, are essential for the emotional state and cognitive processes. However, few studies were performed to elucidate the aberrant dynamics across the large-scale networks across multiple psychiatric disorders. In this paper, we aimed to investigate dynamic aspects of the aberrancy of the causal connections among the large-scale networks of the multiple psychiatric disorders.
Study Design
We applied dynamic causal modeling (DCM) to the large-sample multi-site dataset with 739 participants from 4 imaging sites including 4 different groups, healthy controls, schizophrenia (SCZ), major depressive disorder (MDD), and bipolar disorder (BD), to compare the causal relationships among the large-scale networks, including visual network, somatomotor network (SMN), dorsal attention network (DAN), salience network (SAN), limbic network (LIN), frontoparietal network, and default mode network.
Study Results
DCM showed that the decreased self-inhibitory connection of LIN was the common aberrant connection pattern across psychiatry disorders. Furthermore, increased causal connections from LIN to multiple networks, aberrant self-inhibitory connections of DAN and SMN, and increased self-inhibitory connection of SAN were disorder-specific patterns for SCZ, MDD, and BD, respectively.
Conclusions
DCM revealed that LIN was the core abnormal network common to psychiatric disorders. Furthermore, DCM showed disorder-specific abnormal patterns of causal connections across the 7 networks. Our findings suggested that aberrant dynamics among the large-scale networks could be a key biomarker for these transdiagnostic psychiatric disorders
Distinctive alterations in the mesocorticolimbic circuits in various psychiatric disorders
Aim: Increasing evidence suggests that psychiatric disorders are linked to alterations in the mesocorticolimbic dopamine-related circuits. However, the common and disease-specific alterations remain to be examined in schizophrenia (SCZ), major depressive disorder (MDD), and autism spectrum disorder (ASD). Thus, this study aimed to examine common and disease-specific features related to mesocorticolimbic circuits.
Methods: This study included 555 participants from four institutes with five scanners: 140 individuals with SCZ (45.0% female), 127 individuals with MDD (44.9%), 119 individuals with ASD (15.1%), and 169 healthy controls (HC) (34.9%). All participants underwent resting-state functional magnetic resonance imaging. A parametric empirical Bayes approach was adopted to compare estimated effective connectivity among groups. Intrinsic effective connectivity focusing on the mesocorticolimbic dopamine-related circuits including the ventral tegmental area (VTA), shell and core parts of the nucleus accumbens (NAc), and medial prefrontal cortex (mPFC) were examined using a dynamic causal modeling analysis across these psychiatric disorders.
Results: The excitatory shell-to-core connectivity was greater in all patients than in the HC group. The inhibitory shell-to-VTA and shell-to-mPFC connectivities were greater in the ASD group than in the HC, MDD, and SCZ groups. Furthermore, the VTA-to-core and VTA-to-shell connectivities were excitatory in the ASD group, while those connections were inhibitory in the HC, MDD, and SCZ groups.
Conclusion: Impaired signaling in the mesocorticolimbic dopamine-related circuits could be an underlying neuropathogenesis of various psychiatric disorders. These findings will improve the understanding of unique neural alternations of each disorder and will facilitate identification of effective therapeutic targets