30 research outputs found

    Convexity subarachnoid haemorrhage has a high risk of intracerebral haemorrhage in suspected cerebral amyloid angiopathy

    Get PDF
    The risk of future symptomatic intracerebral haemorrhage (sICH) remains uncertain in patients with acute convexity subarachnoid haemorrhage (cSAH) associated with suspected cerebral amyloid angiopathy (CAA). We assessed the risk of future sICH in patients presenting to our comprehensive stroke service with acute non-traumatic cSAH due to suspected CAA, between 2011 and 2016. We conducted a systematic search and pooled analysis including our cohort and other published studies including similar cohorts. Our hospital cohort included 20 patients (mean age 69 years; 60% male); 12 (60%) had probable CAA, and 6 (30%) had possible CAA according to the modified Boston criteria; two did not meet CAA criteria because of age <55 years, but were judged likely to be due to CAA. Fourteen patients (70%) had cortical superficial siderosis; 12 (60%) had cerebral microbleeds. Over a mean follow-up period of 19 months, 2 patients (9%) suffered sICH, both with probable CAA (annual sICH risk for probable CAA 8%). In a pooled analysis including our cohort and eight other studies (n = 172), the overall sICH rate per patient-year was 16% (95% CI 11-24%). In those with probable CAA (n = 104), the sICH rate per patient-year was 19% (95% CI 13-27%), compared to 7% (95% CI 3-15%) for those without probable CAA (n = 72). Patients with acute cSAH associated with suspected CAA are at high risk of future sICH (16% per patient-year); probable CAA might carry the highest risk

    Clinical features distinguish cerebral amyloid angiopathy-associated convexity subarachnoid haemorrhage from suspected TIA

    Get PDF
    OBJECTIVE: To identity clinical features that distinguish between cerebral amyloid angiopathy (CAA)-associated convexity subarachnoid haemorrhage (cSAH) and suspected TIA. METHODS: We undertook a single-centre, retrospective case-control study. We identified cases [patients with cSAH presenting with transient focal neurological episodes (TFNE)] from radiological and clinical databases of patients assessed at the National Hospital for Neurology and Neurosurgery and UCLH Comprehensive Stroke Service. We identified age- and gender-matched controls at a 1:4 ratio from a database of consecutive suspected TIA clinic attendances at UCLH. We compared presenting symptoms and vascular risk factors between cases and controls. RESULTS: We included 19 patients with cSAH-associated TFNE and 76 matched controls with suspected TIA. Migratory (spreading) symptoms (32% vs. 3%, OR 17.3; p = 0.001), sensory disturbance (47% vs. 14%, OR 5.3; p = 0.003,) and recurrent stereotyped events (47% vs. 19%, OR 3.7; p = 0.02,) occurred more frequently in patients with cSAH compared to controls. Hypercholesterolaemia was less common in patients with cSAH (16% vs 53%, OR 0.17; p = 0.008). CONCLUSION: Simple clinical features could help distinguish cSAH-associated TFNE from suspected TIA, with relevance for investigation and management, including the use of antithrombotic drugs

    Validation and Optimization of Barrow Neurological Institute Score in Prediction of Adverse Events and Functional Outcome After Subarachnoid Hemorrhage-Creation of the HATCH (Hemorrhage, Age, Treatment, Clinical State, Hydrocephalus) Score.

    Get PDF
    BACKGROUND: The Barrow Neurological Institute (BNI) score, measuring maximal thickness of aneurysmal subarachnoid hemorrhage (aSAH), has previously shown to predict symptomatic cerebral vasospasms (CVSs), delayed cerebral ischemia (DCI), and functional outcome. OBJECTIVE: To validate the BNI score for prediction of above-mentioned variables and cerebral infarct and evaluate its improvement by integrating further variables which are available within the first 24 h after hemorrhage. METHODS: We included patients from a single center. The BNI score for prediction of CVS, DCI, infarct, and functional outcome was validated in our cohort using measurements of calibration and discrimination (area under the curve [AUC]). We improved it by adding additional variables, creating a novel risk score (measure by the dichotomized Glasgow Outcome Scale) and validated it in a small independent cohort. RESULTS: Of 646 patients, 41.5% developed symptomatic CVS, 22.9% DCI, 23.5% cerebral infarct, and 29% had an unfavorable outcome. The BNI score was associated with all outcome measurements. We improved functional outcome prediction accuracy by including age, BNI score, World Federation of Neurologic Surgeons, rebleeding, clipping, and hydrocephalus (AUC 0.84, 95% CI 0.8-0.87). Based on this model we created a risk score (HATCH-Hemorrhage, Age, Treatment, Clinical State, Hydrocephalus), ranging 0 to 13 points. We validated it in a small independent cohort. The validated score demonstrated very good discriminative ability (AUC 0.84 [95% CI 0.72-0.96]). CONCLUSION: We developed the HATCH score, which is a moderate predictor of DCI, but excellent predictor of functional outcome at 1 yr after aSAH

    Case report on the spontaneous resolution of a traumatic intracranial acute subdural haematoma: evaluation of the guidelines

    Get PDF
    Rapid spontaneous resolution of traumatic acute subdural haematomas (ASDH) can occur but is rare. We present an 88-year-old female who presents with a large left acute subdural haematoma (ASDH) measuring 18 mm in thickness with midline shift of 10.7 mm. We managed her conservatively based upon good consciousness level and absent neurological deficits. Repeat computed tomography (CT) the following day demonstrated near complete resolution of the ASDH and midline shift regression; a further CT confirmed resolution. Most patients with large ASDH require surgical evacuation; however, in rare cases, they can resolve spontaneously with extreme rapidity. Conservative management can be a valid option in carefully selected cases

    Cerebral Small Vessel Disease and Functional Outcome Prediction after Intracerebral Haemorrhage

    Get PDF
    OBJECTIVE: To determine whether CT-based cerebral small vessel disease (SVD) biomarkers are associated with 6-month functional outcome after intracerebral hemorrhage (ICH), and whether these biomarkers improve the performance of pre-existing ICH score. METHODS: We included 864 patients with acute ICH from a multicentre, hospital-based prospective cohort study. We evaluated CT-based SVD biomarkers (white matter hypodensities [WMH]; lacunes; brain atrophy; and a composite SVD burden score) and their associations with poor 6-month functional outcome (modified Rankin Scale [mRS] score >2). The area under the receiver operating characteristic curve (AUROC) and Hosmer-Lemeshow test were used to assess discrimination and calibration of the ICH score with and without SVD biomarkers. RESULTS: In multivariable models (adjusted for ICH score components), WMH presence (OR 1.52, 95%CI 1.12-2.06), cortical atrophy presence (OR 1.80, 95%CI 1.19-2.73), deep atrophy presence (OR 1.66, 95%CI 1.17-2.34), and severe atrophy (either deep or cortical) (OR 1.94, 95%CI 1.36-2.74) were independently associated with poor functional outcome. For the ICH score, the AUROC was 0.71 (95%CI 0.68-0.74). Adding SVD markers did not significantly improve ICH score discrimination; for the best model (adding severe atrophy) the AUROC was 0.73 (95%CI 0.69-0.76). These results were confirmed when considering lobar and non-lobar ICH, separately. CONCLUSIONS: The ICH score has acceptable discrimination for predicting 6-month functional outcome after ICH. CT biomarkers of SVD are associated with functional outcome but adding them does not significantly improve ICH score discrimination

    MRI and CT imaging biomarkers of cerebral amyloid angiopathy in lobar intracerebral hemorrhage

    Get PDF
    BACKGROUND: Cerebral amyloid angiopathy (CAA), a common cause of intracerebral hemorrhage (ICH), is diagnosed using the Boston criteria including magnetic resonance imaging (MRI) biomarkers (cerebral microbleeds (CMBs) and cortical superficial siderosis (cSS). The simplified Edinburgh criteria include computed tomography (CT) biomarkers (subarachnoid extension (SAE) and finger-like projections (FLPs)). The underlying mechanisms and diagnostic accuracy of CT compared to MRI biomarkers of CAA are unknown. METHODS: We included 140 survivors of spontaneous lobar supratentorial ICH with both acute CT and MRI. We assessed associations between MRI and CT biomarkers and the diagnostic accuracy of CT- compared to MRI-based criteria. RESULTS: FLPs were more common in patients with strictly lobar CMB (44.7% vs 23.5%; p = 0.014) and SAE was more common in patients with cSS (61.3% vs 31.2%; p = 0.002). The high probability of the CAA category of the simplified Edinburgh criteria showed 87.2% (95% confidence interval (CI): 78.3-93.4) specificity, 29.6% (95% CI: 18.0-43.6) sensitivity, 59.3% (95% CI: 38.8-77.6) positive predictive value, and 66.4% (95%: CI 56.9-75.0) negative predictive value, 2.3 (95% CI: 1.2-4.6) positive likelihood ratio and 0.8 (95% CI 0.7-1.0) negative likelihood ratio for probable CAA (vs non-probable CAA), defined by the modified Boston criteria; the area under the receiver operating characteristic curve (AUROC) was 0.62 (95% CI: 0.54-0.71). CONCLUSION: In lobar ICH survivors, we found associations between putative biomarkers of parenchymal CAA (FLP and strictly lobar CMBs) and putative biomarkers of leptomeningeal CAA (SAE and cSS). In a hospital population, CT biomarkers might help rule-in probable CAA (diagnosed using the Boston criteria), but their absence is probably not as useful to rule it out, suggesting an important continued role for MRI in ICH survivors with suspected CAA

    ANGPTL6 genetic variants are an underlying cause of familial intracranial aneurysms

    Get PDF
    BACKGROUND AND PURPOSE: To understand the role of the angiopoietin-like 6 gene (ANGPTL6) in intracranial aneurysms (IA) we investigated its role in a large cohort of familial IAs. METHODS: Inclusion of individuals with family history of IA recruited to the Genetic and Observational Subarachnoid Haemorrhage (GOSH) study. The ANGPTL6 gene was sequenced using Sanger sequencing. Identified genetic variants were compared to a control population. RESULTS: We found six rare ANGPTL6 genetic variants in 9/275 individuals with a family history of IA (3.3%), none of them were present in controls: Five missense and one nonsense mutation leading to a premature stop codon. One of these had been previously reported: c.392A>T (p.Glu131Val) on exon 2, another was very close: c.332G>A (p.Arg111His). Two further genetic variants lie within the fibrinogen-like domain of the ANGPTL6 gene, which may influence function or level of the ANGPTL6 protein. The last two missense mutations lie within the coiled-coil domain of the ANGPTL6 protein. All genetic variants were well conserved across species. CONCLUSION: ANGPTL6 genetic variants are an important cause of IA. Defective or lack of ANGPTL6 protein is therefore an important factor in blood vessel proliferation leading to IA; dysfunction of this protein is likely to cause abnormal proliferation or weakness of vessel walls. With these data, not only do we emphasise the importance of screening familial IA cases for ANGPTL6 and other genes involved in IA, but also highlight the ANGPTL6 pathway as a potential therapeutic target. CLASSIFICATION OF EVIDENCE: This is a Class III study showing some specificity of presence of the ANGPTL6 gene variant as a marker of familial intracranial aneurysms in a small subset of those with familial aneurysms

    Haptoglobin genotype and outcome after spontaneous intracerebral haemorrhage

    Get PDF
    OBJECTIVE: Haptoglobin is a haemoglobin-scavenging protein that binds and neutralises free haemoglobin and modulates inflammation and endothelial progenitor cell function. A HP gene copy number variation (CNV) generates HP1 and HP2 alleles, while the single-nucleotide polymorphism rs2000999 influences their levels. The HP1 allele is hypothesised to improve outcome after spontaneous (non-traumatic) intracerebral haemorrhage (ICH). We investigated the associations of the HP CNV genotype and rs2000999 with haematoma volume, perihaematomal oedema (PHO) volume, functional outcome and mortality after ICH. METHODS: We included patients with neuroimaging-proven ICH, available DNA and 6-month follow-up in an observational cohort study (CROMIS-2). We classified patients into three groups according to the HP CNV: 1-1, 2-1 or 2-2 and also dichotomised HP into HP1-containing genotypes (HP1-1 and HP2-1) and HP2-2 to evaluate the HP1 allele. We measured ICH and PHO volume on CT; PHO was measured by oedema extension distance. Functional outcome was assessed by modified Rankin score (unfavourable outcome defined as mRS 3-6). RESULTS: We included 731 patients (mean age 73.4, 43.5% female). Distribution of HP CNV genotype was: HP1-1 n=132 (18.1%); HP2-1 n=342 (46.8%); and HP2-2 n=257 (35.2%). In the multivariable model mortality comparisons between HP groups, HP2-2 as reference, were as follows: OR HP1-1 0.73, 95% CI 0.34 to 1.56 (p value=0.41) and OR HP2-1 0.5, 95% CI 0.28 to 0.89 (p value=0.02) (overall p value=0.06). We found no evidence of association of HP CNV or rs200999 with functional outcome, ICH volume or PHO volume. CONCLUSION: The HP2-1 genotype might be associated with lower 6-month mortality after ICH; this finding merits further study

    Genome-Wide Association Study of Clinical Outcome After Aneurysmal Subarachnoid Haemorrhage: Protocol

    Get PDF
    Aneurysmal subarachnoid haemorrhage (aSAH) results in persistent clinical deficits which prevent survivors from returning to normal daily functioning. Only a small fraction of the variation in clinical outcome following aSAH is explained by known clinical, demographic and imaging variables; meaning additional unknown factors must play a key role in clinical outcome. There is a growing body of evidence that genetic variation is important in determining outcome following aSAH. Understanding genetic determinants of outcome will help to improve prognostic modelling, stratify patients in clinical trials and target novel strategies to treat this devastating disease. This protocol details a two-stage genome-wide association study to identify susceptibility loci for clinical outcome after aSAH using individual patient-level data from multiple international cohorts. Clinical outcome will be assessed using the modified Rankin Scale or Glasgow Outcome Scale at 1-24 months. The stage 1 discovery will involve meta-analysis of individual-level genotypes from different cohorts, controlling for key covariates. Based on statistical significance, supplemented by biological relevance, top single nucleotide polymorphisms will be selected for replication at stage 2. The study has national and local ethical approval. The results of this study will be rapidly communicated to clinicians, researchers and patients through open-access publication(s), presentation(s) at international conferences and via our patient and public network

    Genome-Wide Association Study Identifies Risk Loci for Cluster Headache

    Get PDF
    OBJECTIVE: To identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model, for each cohort. The two cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified two replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 x 10-17 , OR [95%CI] = 1.51 [1.37-1.66]) and rs4519530 (p = 6.98 x 10-17 , OR = 1.47 [1.34-1.61]) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 x 10-8 , OR = 1.36 [1.22-1.52]) and rs11153082 (p = 1.85 x 10-8 , OR = 1.30 [1.19-1.42]) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide-significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to e.g. treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache
    corecore