282 research outputs found

    Understanding the Value of Judicial Diversity Through the Native American Lens

    Get PDF

    The role of relatives in decisions concerning life-prolonging treatment in patients with end-stage malignant disorders: informants, advocates or surrogate decision-makers?

    Get PDF
    Background: This study examines the extent to which relatives of severely ill cancer patients are involved in the decision to limit treatment (DLT), their role in communicating patient wishes and the incidence of and reasons for disagreement with relatives. Patients and methods: This cohort study followed 70 patients with terminal cancer, for whom a limitation of life-prolonging treatment was being considered. ‘Embedded researchers' recorded patients' wishes and the relatives' roles and disagreements with DLT. Results: Although 63 out of 70 patients had relatives present during their care, only 32% of relatives were involved in DLT. Physicians were more likely to know the end-of-life (EOL) preferences for those patients who had visiting relatives than those without them (78% versus 29%, P = 0.014). Most relatives supported patients in voicing their preferences (68%), but one-third acted against the known or presumed wishes of patients (32%). Disagreements with patients' relatives occurred in 21% of cases, and predominantly when relatives held views that contradicted known patient preferences (71% versus 7%, P = 0.001). Conclusion: If relatives are to play an important part in EOL decision making, we must devise strategies to recognise their potential as patients' advocates as well as their own need

    Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries

    Get PDF
    Nanomaterials as anode for lithium-ion batteries (LIB) have gained widespread interest in the research community. However, scaling up and processibility are bottlenecks to further commercialization of these materials. Here, we report that bulk antimony sulfide with a size of 10-20 mu m exhibits a high capacity and stable cycling of 800 mAh g(-1). Mechanical and chemical stabilities of the electrodes are ensured by an optimal electrode-electrolyte system design, with a polyimide-based binder together with fluoroethylene carbonate in the electrolyte. The polyimide binder accommodates the volume expansion during alloying process and fluoroethylene carbonate suppresses the increase in charge transfer resistance of the electrodes. We observed that particle size is not a major factor affecting the charge-discharge capacities, rate capability and stability of the material. Despite the large particle size, bulk antimony sulfide shows excellent rate performance with a capacity of 580 mAh g(-1) at a rate of 2000 mA g(-1)

    The influence of point defects on the entropy profiles of Lithium Ion Battery cathodes:a lattice-gas Monte Carlo study

    Get PDF
    In-situ diagnostic tools have become established to as a means to understanding the aging processes that occur during charge/discharge cycles in Li-ion batteries (LIBs). One electrochemical thermodynamic technique that can be applied to this problem is known as entropy profiling. Entropy profiles are obtained by monitoring the variation in the open circuit potential as a function of temperature. The peaks in these profiles are related to phase transitions, such as order/disorder transitions, in the lattice. In battery aging studies of cathode materials, the peaks become suppressed but the mechanism by which this occurs is currently poorly understood. One suggested mechanism is the formation of point defects. Intentional modifications of LIB electrodes may also lead to the introduction of point defects. To gain quantitative understanding of the entropy profile changes that could be caused by point defects, we have performed Monte Carlo simulations on lattices of variable defect content. As a model cathode, we have chosen manganese spinel, which has a well-described order-disorder transition when it is half filled with Li. We assume, in the case of trivalent defect substitution (M = Cr,Co) that each defect M permanently pins one Li atom. This assumption is supported by Density Functional Theory (DFT) calculations. Assuming that the distribution of the pinned Li sites is completely random, we observe the same trend in the change in partial molar entropy with defect content as observed in experiment: the peak amplitudes become increasing suppressed as the defect fraction is increased. We also examine changes in the configurational entropy itself, rather than the entropy change, as a function of the defect fraction and analyse these results with respect to the ones expected for an ideal solid solution. We discuss the implications of the quantitative differences between some of the results obtained from the model and the experimentally observed ones

    Numerical simulations of cyclic voltammetry for lithium-ion intercalation in nanosized systems: Finiteness of diffusion versus electrode kinetics

    Get PDF
    The voltammetric behavior of Li+ intercalation/deintercalation in/from LiMn2O4 thin films and single particles is simulated, supporting very recent experimental results. Experiments and calculations both show that particle size and geometry are crucial for the electrochemical response. A remarkable outcome of this research is that higher potential sweep rates, of the order of several millivolts per second, may be used to characterize nanoparticles by voltammetry sweeps, as compared with macroscopic systems. This is in line with previous conclusions drawn for related single particle systems using kinetic Monte Carlo simulations. The impact of electrode kinetics and finite space diffusion on the reversibility of the process and the finiteness of the diffusion in ion Li / LiMn2O4 (de)intercalation is also discussed in terms of preexisting modeling.Fil: Gavilán Arriazu, Edgardo Maximiliano. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Mercer, M.P.. Lancaster University; Reino UnidoFil: Pinto, Oscar Alejandro. Universidad Nacional de Santiago del Estero. Instituto de Bionanotecnología del Noa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto de Bionanotecnología del Noa; ArgentinaFil: Oviedo, Oscar Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; ArgentinaFil: Barraco Diaz, Daniel Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; ArgentinaFil: Hoster, H. E.. Lancaster University; Reino UnidoFil: Leiva, Ezequiel Pedro M.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Investigaciones en Físico-química de Córdoba. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Instituto de Investigaciones en Físico-química de Córdoba; Argentin

    Investigating changes in transport, kinetics and heat generation over NCA/Gr-SiOx battery lifetime

    Get PDF
    We present a study of battery ageing, comparing pristine, calendar-aged, and cycle-aged lithium-ion cells. Insight into degradation was obtained via differential voltage analysis and by estimating and tracking changes in a subset of electrochemical model parameters of the single particle model through inverse modelling. We show that both diffusion time and kinetic overpotential increase in cycle-aged cells, while calendar-aged cells experienced no diffusion time changes but some kinetic overpotential increase. The latter is also evident in 50% higher irreversible heat generation in cycle-aged cells. This study highlights the importance of updating battery model parameters during ageing

    Long-term follow-up of cytogenetically normal CEBPA-mutated AML

    Get PDF
    Background: The aim of this study was to analyze the long-term survival of AML patients with CEBPA mutations. Patients and methods: We investigated 88 AML patients with a median age of 61 years and (1) cytogenetically normal AML (CN-AML), (2) monoallelic (moCEBPA) or biallelic (biCEBPA) CEBPA mutation, and (3) intensive induction treatment. 60/88 patients have been described previously with a shorter follow-up. Results: Median follow-up time was 9.8 years (95% CI: 9.4-10.1 years) compared to 3.2 and 5.2 years in our former analyses. Patients with biCEBPA mutations survived significantly longer compared to those with moCEBPA (median overall survival (OS) 9.6 years vs. 1.7 years, p = 0.008). Patients <= 60 years and biCEBPA mutations showed a favorable prognosis with a 10-year OS rate of 81%. Both, bi- and moCEBPA-mutated groups had a low early death (d60) rate of 7% and 9%, respectively. Complete remission (CR) rates for biCEBPA and moCEBPA mutated patients were 82% vs. 70% (p = 0.17). biCEBPA mutated patients showed a longer relapse free survival (RFS) (median RFS 9.4 years vs. 1.5 years, p = 0.021) and a lower cumulative incidence of relapse (CIR) compared to moCEBPA-mutated patients. These differences in OS and RFS were confirmed after adjustment for known clinical and molecular prognostic factors. Conclusions: In this long-term observation we confirmed the favorable prognostic outcome of patients with biCEBPA mutations compared to moCEBPA-mutated CN-AML. The high probability of OS (81%) in younger patients is helpful to guide intensity of postremission therapy

    Креативность как личностное качество обучающихся сквозь призму самоанализа

    Get PDF
    The focus of this study was to assess exercise-induced alterations of circulating dendritic cell (DC) subpopulations and toll-like receptor (TLR) expression after marathon running. Blood sampling was performed in 15 obese non-elite (ONE), 16 lean non-elite (LNE) and 16 lean elite (LE) marathon runners pre- and post-marathon as well as 24 h after the race. Circulating DC-fractions were measured by flow-cytometry analyzing myeloid DCs (BDCA-1+) and plasmacytoid DCs (BDCA-2+). We further analyzed the (TLR) -2/-4/-7 in peripheral blood mononuclear cells (rt-PCR/Western Blot) and the cytokines CRP, IL-6, IL-10, TNF-α and oxLDL by ELISA. After the marathon, BDCA-1 increased significantly in all groups [LE (pre/post): 0.35/0.47%; LNE: 0.26/0.50% and ONE: 0.30/0.49%; all p < 0.05]. In contrast, we found a significant decrease for BDCA-2 directly after the marathon (LE: 0.09/0.01%; LNE: 0.12/0.03% and ONE: 0.10/0.02%; all p < 0.05). Levels of TLR-7 mRNA decreased in all groups post-marathon (LE 44%, LNE 67% and ONE 52%; all p < 0.01), with a consecutive protein reduction (LE 31%, LNE 52%, ONE 42%; all p < 0.05) 24 h later. IL-6 and IL-10 levels increased immediately after the run, whereas increases of TNF-α and CRP-levels were seen after 24 h. oxLDL levels remained unchanged post-marathon. In our study population, we did not find any relevant differences regarding training level or body weight. Prolonged endurance exercise induces both pro- and anti-inflammatory cytokines. Anti-inflammatory cytokines, such as IL-10, may help to prevent excessive oxidative stress. Marathon running is associated with alterations of DC subsets and TLR-expression independent of training level or body weight. Myeloid and plasmacytoid DCs are differently affected by the excessive physical stress. Immunomodulatory mechanisms seem to play a key role in the response and adaptation to acute excessive exercise

    B-cell receptor-driven MALT1 activity regulates MYC signaling in mantle cell lymphoma.

    Get PDF
    Mantle cell lymphoma (MCL) is a mature B-cell lymphoma characterized by poor clinical outcome. Recent studies revealed the importance of B-cell receptor (BCR) signaling in maintaining MCL survival. However, it remains unclear which role MALT1, an essential component of the CARD11-BCL10-MALT1 complex that links BCR signaling to the NF-κB pathway, plays in the biology of MCL. Here we show that a subset of MCLs is addicted to MALT1, as its inhibition by either RNA or pharmacologic interference induced cytotoxicity both in vitro and in vivo. Gene expression profiling following MALT1 inhibition demonstrated that MALT1 controls an MYC-driven gene expression network predominantly through increasing MYC protein stability. Thus, our analyses identify a previously unappreciated regulatory mechanism of MYC expression. Investigating primary mouse splenocytes, we could demonstrate that MALT1-induced MYC regulation is not restricted to MCL, but represents a common mechanism. MYC itself is pivotal for MCL survival because its downregulation and pharmacologic inhibition induced cytotoxicity in all MCL models. Collectively, these results provide a strong mechanistic rationale to investigate the therapeutic efficacy of targeting the MALT1-MYC axis in MCL patients

    Ki-67 as a prognostic marker in mantle cell lymphoma—consensus guidelines of the pathology panel of the European MCL Network

    Get PDF
    Mantle cell lymphoma (MCL) has a heterogeneous clinical course and is mainly an aggressive B cell non-Hodgkin lymphoma; however, there are some indolent cases The Ki-67 index, defined by the percentage of Ki-67-positive lymphoma cells on histopathological slides, has been shown to be a very powerful prognostic biomarker. The pathology panel of the European MCL Network evaluated methods to assess the Ki-67 index including stringent counting, digital image analysis, and estimation by eyeballing. Counting of 2 × 500 lymphoma cells is the gold standard to assess the Ki-67 index since this value has been shown to predict survival in prospective randomized trials of the European MCL Network. Estimation by eyeballing and digital image analysis showed a poor concordance with the gold standard (concordance correlation coefficients [CCC] between 0.29 and 0.61 for eyeballing and CCC of 0.24 and 0.37 for two methods of digital image analysis, respectively). Counting a reduced number of lymphoma cells (2 × 100 cells) showed high interobserver agreement (CCC = 0.74). Pitfalls of the Ki-67 index are discussed and guidelines and recommendations for assessing the Ki-67 index in MCL are given
    corecore