12 research outputs found

    Exploiting Nucleotide Composition to Engineer Promoters

    Get PDF
    The choice of promoter is a critical step in optimizing the efficiency and stability of recombinant protein production in mammalian cell lines. Artificial promoters that provide stable expression across cell lines and can be designed to the desired strength constitute an alternative to the use of viral promoters. Here, we show how the nucleotide characteristics of highly active human promoters can be modelled via the genome-wide frequency distribution of short motifs: by overlapping motifs that occur infrequently in the genome, we constructed contiguous sequence that is rich in GC and CpGs, both features of known promoters, but lacking homology to real promoters. We show that snippets from this sequence, at 100 base pairs or longer, drive gene expression in vitro in a number of mammalian cells, and are thus candidates for use in protein production. We further show that expression is driven by the general transcription factors TFIIB and TFIID, both being ubiquitously present across cell types, which results in less tissue- and species-specific regulation compared to the viral promoter SV40. We lastly found that the strength of a promoter can be tuned up and down by modulating the counts of GC and CpGs in localized regions. These results constitute a “proof-of-concept” for custom-designing promoters that are suitable for biotechnological and medical applications

    Premises, promises, and perils of the Academic Potemkin Village

    No full text
    Increased competition for students and financial resources has contributed to a managerialist perspective in higher education. In this competitive landscape, institutional decision-making may prioritize choices perceived as rational imperatives to the forces buffeting higher education, bringing unintended consequences when they are driven mostly by short-term, marketing-based, revenue-enhancing considerations. In their efforts to “look good,” such institutions risk becoming Academic Potemkin Villages where symbolic façades are erected to impress relevant stakeholders at the risk of overshadowing core missions of learning and research. Exploring the Academic Potemkin Village metaphor, we examine its premises (factors that are pressuring higher education), its promises (the seduction of building various symbolic façades to respond to those pressures), and its perils (the impact on institutions, faculty, and students). We then suggest ways of building out Academic Potemkin Villages into lasting and unique collaborations, re-focused on the core values of higher education

    Hormone-dependent dissociation of blood flow and secretion rate in the lingual salt glands of the estuarine crocodile, Crocodylus porosus

    No full text
    Salt and water balance in the estuarine crocodile, Crocodylus porosus, involves the coordinated action of both renal and extra-renal tissues. The highly vascularised, lingual salt glands of C. porosus excrete a concentrated sodium chloride solution. In the present study, we examined the in vivo actions of vasoactive intestinal peptide (VIP), B-type natriuretic peptide (BNP) and angiotensin II (ANG II) on the secretion rate and blood perfusion of the lingual salt glands. These peptides were selected for their vasoactive properties in addition to their reported actions on salt gland activity in birds and turtles and rectal gland activity in elasmobranchs. The femoral artery was cannulated in seven juvenile crocodiles for delivery of peptides and measurement of mean blood pressure and heart rate. In addition, secretion rate of, and blood flow to, the salt glands were recorded simultaneously using laser Doppler flowmetry. VIP stimulated salt secretion was coupled to an increase in blood flow and vascular conductance of the lingual salt glands. BNP was a potent stimulant of salt gland secretion, resulting in a maximal secretion rate of more than 15-fold higher than baseline; however, this was not coupled to an increase in perfusion rate, which remained unchanged. ANG II failed to stimulate salt gland secretion and there was a transient decrease in salt gland blood flow and vascular conductance. It is evident from this study that blood flow to, and secretion rate from, the lingual salt glands of C. porosus are regulated independently; indeed, it is apparent that maximal secretion from the salt glands may not require maximal blood flow
    corecore