1 research outputs found
Comparative genomics of two jute species and insight into fibre biogenesis
Jute (Corchorus sp.) is one of the most important sources of natural fibre, covering ∼80% of global bast fibre production1. Only Corchorus olitorius and Corchorus capsularis are commercially cultivated, though there are more than 100 Corchorus species2 in the Malvaceae family. Here we describe high-quality draft genomes of these two species and their comparisons at the functional genomics level to support tailor-designed breeding. The assemblies cover 91.6% and 82.2% of the estimated genome sizes for C. olitorius and C. capsularis, respectively. In total, 37,031 C. olitorius and 30,096 C. capsularis genes are identified, and most of the genes are validated by cDNA and RNA-seq data. Analyses of clustered gene families and gene collinearity show that jute underwent shared whole-genome duplication ∼18.66 million years (Myr) ago prior to speciation. RNA expression analysis from isolated fibre cells reveals the key regulatory and structural genes involved in fibre formation. This work expands our understanding of the molecular basis of fibre formation laying the foundation for the genetic improvement of jute.
Bast (phloem) fibres are obtained from the stem of the plants such as jute, flax, hemp, ramie and kenaf. The annual global production of jute generates a farm value of ∼US$2.3 billion1. The cultivated species of jute, C. olitorius and C. capsularis, are morphologically and physiologically distinct (Supplementary Fig. 1), and a combination of useful traits from these species into a single genotype is highly desirable3. However, interspecific hybridization is limited because of their cross-incompatibility4,5. To facilitate comparative functional genomics and to understand the molecular basis of bast fibre biogenesis, genomes of two popular jute cultivars C. olitorius var. O-4 and C. capsularis var. CVL-1 are sequenced and analysed