4 research outputs found

    Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits

    Full text link
    Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars

    Application of image processing and transfer learning for the detection of rust disease

    No full text
    Abstract Plant diseases introduce significant yield and quality losses to the food production industry, worldwide. Early identification of an epidemic could lead to more effective management of the disease and potentially reduce yield loss and limit excessive input costs. Image processing and deep learning techniques have shown promising results in distinguishing healthy and infected plants at early stages. In this paper, the potential of four convolutional neural network models, including Xception, Residual Networks (ResNet)50, EfficientNetB4, and MobileNet, in the detection of rust disease on three commercially important field crops was evaluated. A dataset of 857 positive and 907 negative samples captured in the field and greenhouse environments were used. Training and testing of the algorithms were conducted using 70% and 30% of the data, respectively where the performance of different optimizers and learning rates were tested. Results indicated that EfficientNetB4 model was the most accurate model (average accuracy = 94.29%) in the disease detection followed by ResNet50 (average accuracy = 93.52%). Adaptive moment estimation (Adam) optimizer and learning rate of 0.001 outperformed all other corresponding hyperparameters. The findings from this study provide insights into the development of tools and gadgets useful in the automated detection of rust disease required for precision spraying

    Assessing the Effect of Phenotyping Scoring Systems and SNP Calling and Filtering Parameters on Detection of QTL Associated with Reaction of Brassica napus to Sclerotinia sclerotiorum

    No full text
    The polyploid nature of canola (Brassica napus) represents a challenge for the accurate identification of single-nucleotide polymorphisms (SNPs) and the detection of quantitative trait loci (QTL). In this study, combinations of eight phenotyping scoring systems and six SNP calling and filtering parameters were evaluated for their efficiency in detection of QTL associated with response to Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, in two doubled haploid canola mapping populations. Most QTL were detected in lesion length, relative areas under the disease progress curve (rAUDPC) for lesion length, and binomial-plant mortality data sets. Binomial data derived from lesion size were less efficient in QTL detection. Inclusion of additional phenotypic sets to the analysis increased the numbers of significant QTL by 2.3-fold; however, the continuous data sets were more efficient. Between two filtering parameters used to analyze genotyping-by-sequencing data, imputation of missing data increased QTL detection in one population with a high level of missing data but not in the other. Inclusion of segregation-distorted SNPs increased QTL detection but did not impact their R2 values significantly. In all, 12 of 16 detected QTL were on chromosomes A02 and C01, and the rest were on A07, A09, and C03. Marker A02-7594120, associated with a QTL on chromosome A02, was detected in both populations. Results of this study suggest that the impact of genotypic variant calling and filtering parameters may be population dependent while deriving additional phenotyping scoring systems such as rAUDPC datasets and mortality binary may improve QTL detection efficiency.[Graphic: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license

    Integration of genetic and genomics resources in einkorn wheat enables precision mapping of important traits

    No full text
    Abstract Einkorn wheat (Triticum monococcum) is an ancient grain crop and a close relative of the diploid progenitor (T. urartu) of polyploid wheat. It is the only diploid wheat species having both domesticated and wild forms and therefore provides an excellent system to identify domestication genes and genes for traits of interest to utilize in wheat improvement. Here, we leverage genomic advancements for einkorn wheat using an einkorn reference genome assembly combined with skim-sequencing of a large genetic population of 812 recombinant inbred lines (RILs) developed from a cross between a wild and a domesticated T. monococcum accession. We identify 15,919 crossover breakpoints delimited to a median and average interval of 114 Kbp and 219 Kbp, respectively. This high-resolution mapping resource enables us to perform fine-scale mapping of one qualitative (red coleoptile) and one quantitative (spikelet number per spike) trait, resulting in the identification of small physical intervals (400 Kb to 700 Kb) with a limited number of candidate genes. Furthermore, an important domestication locus for brittle rachis is also identified on chromosome 7A. This resource presents an exciting route to perform trait discovery in diploid wheat for agronomically important traits and their further deployment in einkorn as well as tetraploid pasta wheat and hexaploid bread wheat cultivars
    corecore