50 research outputs found

    Can Choline PET Tackle the Challenge of Imaging Prostate Cancer?

    Get PDF
    Positron emission tompography with radiolabeled (with 11C- or 18F-) choline has received much attention, particularly in Europe and Japan, over the past several years. While monitoring cellular membrane lipogenesis with radiolabeled choline is nonspecific for cancer, the malignancy-induced increased demand for cellular membrane synthesis can be a useful feature for imaging-based diagnosis and treatment evaluation. Many choline PET(/CT) studies have focused on prostate cancer given that 18F-flurodeoxyglucose appears to be primarily useful in progressive metastatic disease and is overall limited in the initial staging of disease or for evaluation of men with biochemical recurrence. The current evidence suggests that choline PET(/CT), particularly the 18F- label, may become routinely available, initially in many European countries, for the clinical imaging evaluation of men with prostate cancer

    Computer analysis of the electrocardiogram for detection of myocardial ischemia during transesophageal atrial pacing stress

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43996/1/10439_2006_Article_BF02368039.pd

    Joint EANM, SNMMI, and IAEA Enabling Guide: How to Set up a Theranostics Center.

    Full text link
    peer reviewedThe theranostics concept using the same target for both imaging and therapy dates back to the middle of the last century, when radioactive iodine was first used to treat thyroid diseases. Since then, radioiodine has become broadly established clinically for diagnostic imaging and therapy of benign and malignant thyroid disease, worldwide. However, only since the approval of SSTR2-targeting theranostics following the NETTER-1 trial in neuroendocrine tumors, and the positive outcome of the VISION trial has theranostics gained substantial attention beyond nuclear medicine. The roll-out of radioligand therapy for treating a high-incidence tumor such as prostate cancer requires the expansion of existing and the establishment of new theranostics centers. Despite wide global variation in the regulatory, financial and medical landscapes, this guide attempts to provide valuable information to enable interested stakeholders to safely initiate and operate theranostic centers. This enabling guide does not intend to answer all possible questions, but rather to serve as an overarching framework for multiple, more detailed future initiatives. It recognizes that there are regional differences in the specifics of regulation of radiation safety, but common elements of best practice valid globally

    Optimum imaging strategies for advanced prostate cancer: ASCO guideline

    Get PDF
    PURPOSE Provide evidence- and expert-based recommendations for optimal use of imaging in advanced prostate cancer. Due to increases in research and utilization of novel imaging for advanced prostate cancer, this guideline is intended to outline techniques available and provide recommendations on appropriate use of imaging for specified patient subgroups. METHODS An Expert Panel was convened with members from ASCO and the Society of Abdominal Radiology, American College of Radiology, Society of Nuclear Medicine and Molecular Imaging, American Urological Association, American Society for Radiation Oncology, and Society of Urologic Oncology to conduct a systematic review of the literature and develop an evidence-based guideline on the optimal use of imaging for advanced prostate cancer. Representative index cases of various prostate cancer disease states are presented, including suspected high-risk disease, newly diagnosed treatment-naïve metastatic disease, suspected recurrent disease after local treatment, and progressive disease while undergoing systemic treatment. A systematic review of the literature from 2013 to August 2018 identified fully published English-language systematic reviews with or without meta-analyses, reports of rigorously conducted phase III randomized controlled trials that compared $ 2 imaging modalities, and noncomparative studies that reported on the efficacy of a single imaging modality. RESULTS A total of 35 studies met inclusion criteria and form the evidence base, including 17 systematic reviews with or without meta-analysis and 18 primary research articles. RECOMMENDATIONS One or more of these imaging modalities should be used for patients with advanced prostate cancer: conventional imaging (defined as computed tomography [CT], bone scan, and/or prostate magnetic resonance imaging [MRI]) and/or next-generation imaging (NGI), positron emission tomography [PET], PET/CT, PET/MRI, or whole-body MRI) according to the clinical scenario

    The Use of Imaging in the Prediction and Assessment of Cancer Treatment Toxicity

    No full text
    Multimodal imaging is commonly used in the management of patients with cancer. Imaging plays pivotal roles in the diagnosis, initial staging, treatment response assessment, restaging after treatment and the prognosis of many cancers. Indeed, it is difficult to imagine modern precision cancer care without the use of multimodal molecular imaging, which is advancing at a rapid pace with innovative developments in imaging sciences and an improved understanding of the complex biology of cancer. Cancer therapy often leads to undesirable toxicity, which can range from an asymptomatic subclinical state to severe end organ damage and even death. Imaging is helpful in the portrayal of the unwanted effects of cancer therapy and may assist with optimal clinical decision-making, clinical management, and overall improvements in the outcomes and quality of life for patients

    Imaging Cellular Proliferation in Prostate Cancer with Positron Emission Tomography

    No full text
    Prostate cancer remains a major public health problem worldwide. Imaging plays an important role in the assessment of disease at all its clinical phases, including staging, restaging after definitive therapy, evaluation of therapy response, and prognostication. Positron emission tomography with a number of biologically targeted radiotracers has been demonstrated to have potential diagnostic and prognostic utility in the various clinical phases of this prevalent disease. Given the remarkable biological heterogeneity of prostate cancer, one major unmet clinical need that remains is the non-invasive imaging-based characterization of prostate tumors. Accurate tumor characterization allows for image-targeted biopsy and focal therapy as well as facilitates objective assessment of therapy effect. PET in conjunction with radiotracers that track the thymidine salvage pathway of DNA synthesis may be helpful to fulfill this necessity. We review briefly the preclinical and pilot clinical experience with the two major cellular proliferation radiotracers, [18F]-3’-deoxy-3’-fluorothymidine and [18F]-2’-fluoro-5-methyl-1-beta-D-arabinofuranosyluracil in prostate cancer

    Positron Emission Tomography in Prostate Cancer: Summary of Systematic Reviews and Meta-Analyses

    No full text
    Prostate cancer is a prevalent public health problem worldwide. Over the past decade, there has been tremendous research activity in the potential use of positron emission tomography with a number of radiotracers targeted to various biological aspects of this complex tumor. Systematic reviews and meta-analyses are important contributions to the relevant literature that summarize the evidence while reducing the effect of various sources of bias in the published data. The accumulation of relevant data in this clinical setting has recently provided the opportunity for systematic reviews. In this brief article, I summarize the published systematic reviews and meta-analyses of positron emission tomography in prostate cancer. Most robust evidence suggests a probable role for first-line use of positron emission tomography with radiolabeled choline in restating patients with biochemical relapse of prostate cancer with the diagnostic performance that seems to be positively associated with the serum prostate-specific antigen level and velocity. Future systematic reviews will be needed for other emerging radiotracers such as those based on the prostate-specific membrane antigen and gastrin-releasing peptide receptor
    corecore