7,650 research outputs found

    Crystal Symmetry Breaking in Few-Quintuple Bismuth Telluride Films: Applications in Nanometrology of Topological Insulators

    Full text link
    We report results of micro-Raman spectroscopy investigation of the "graphene-like" mechanically exfoliated single-crystal bismuth telluride films with the thickness ranging from a few-nm-range to bulk limit. It is found that the optical phonon mode A1u, which is not-Raman active in bulk bismuth telluride crystals, appears in the atomically-thin films due to crystal-symmetry breaking. The intensity ratios of the out-of-plane A1u and A1g modes to the in-plane Eg mode grow with decreasing film thickness. The evolution of Raman signatures with the film thickness can be used for identification of bismuth telluride crystals with the thickness of few-quintuple layers, which are important for topological insulator and thermoelectric applications.Comment: 13 pages, 2 tables, 3 figures; to be presented at MRS Spring Meeting, 201

    Preparation of high crystalline nanoparticles of rare-earth based complex pervoskites and comparison of their structural and magnetic properties with bulk counterparts

    Full text link
    A simple route to prepare Gd0.7_{0.7}Sr0.3_{0.3}MnO3_3 nanoparticles by ultrasonication of their bulk powder materials is presented in this article. For comparison, Gd0.7_{0.7}Sr0.3_{0.3}MnO3_3 nanoparticles are also prepared by ball milling. The prepared samples are characterized by X-ray diffraction (XRD),field emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX), X-ray photoelectron spectroscope (XPS), and Superconducting Quantum Interference Device (SQUID) magnetometer. XRD Rietveld analysis is carried out extensively for the determination of crystallographic parameters and the amount of crystalline and amorphous phases. FESEM images demonstrate the formation of nanoparticles with average particle size in the range of 50-100 nm for both ultrasonication and 4 hours (h) of ball milling. The bulk materials and nanoparticles synthesized by both ultrasonication and 4 h ball milling exhibit a paramagnetic to spin-glass transition. However, nanoparticles synthesized by 8 h and 12 h ball milling do not reveal any phase transition, rather show an upturn of magnetization at low temperature. The degradation of the magnetic properties in ball milled nanoparticles may be associated with amorphization of the nanoparticles due to ball milling particularly for milling time exceeding 8 h. This investigation demonstrates the potential of ultrasonication as a simple route to prepare high crystalline rare-earth based manganite nanoparticles with improved control compared to the traditional ball milling technique.Comment: 9 pages, 6 figure
    • …
    corecore