6,708 research outputs found
Strong enhancement of Jc in binary and alloyed in-situ MgB2 wires by a new approach: Cold high pressure densification
Cold high pressure densification (CHPD) is presented as a new way to
substantially enhance the critical current density of in situ MgB2 wires at 4.2
and 20 K at fields between 5 and 14 T. The results on two binary MgB2 wires and
an alloyed wire with 10 wt.% B4C are presented The strongest enhancement was
measured at 20K, where cold densification at 1.85 GPa on a binary Fe/MgB2 wire
raised both Jcpara and Jcperp by more than 300% at 5T, while Birr was enhanced
by 0.7 T. At 4.2K, the enhancement of Jc was smaller, but still reached 53% at
10 T. After applying pressures up to 6.5 GPa, the mass density dm of the
unreacted (B+Mg) mixture inside the filaments reached 96% of the theoretical
density. After reaction under atmospheric pressure, this corresponds to a
highest mass density df in the MgB2 filaments of 73%. After reaction, the
electrical resistance of wires submitted to cold densification was found to
decrease, reflecting an improved connectivity. A quantitative correlation
between filament mass density and the physical properties was established.
Monofilamentary rectangular wires with aspect ratios a/b < 1.25 based on low
energy ball milled powders exhibited very low anisotropy ratios, Gamma =
Jcpara/Jcperp being < 1.4 at 4.2 K and 10T. The present results can be
generalized to alloyed MgB2 wires, as demonstrated on a wire with B4C
additives. Based on the present data, it follows that cold densification has
the potential of further improving the highest Jcpara and Jcperp values
reported so far for in situ MgB2 tapes and wires with SiC and C additives.
Investigations are under work in our laboratory to determine whether the
densification method CHPD can be applied to longer wire or tape lengths.Comment: Submitted to Superconductors Science and Technolog
Background independent quantization and the uncertainty principle
It is shown that polymer quantization leads to a modified uncertainty
principle similar to that obtained from string theory and non-commutative
geometry. When applied to quantum field theory on general background
spacetimes, corrections to the uncertainty principle acquire a metric
dependence. For Friedmann-Robertson-Walker cosmology this translates to a scale
factor dependence which gives a large effect in the early universe.Comment: 6 page
STR-920: STRUCTURAL BEHAVIOUR OF REINFORCED HIGH PERFORMANCE CONCRETE COLUMNS SUBJECTED TO MONOTONIC AXIAL LOADING
This paper presents the results of experimental and analytical investigations on the structural performance of high performance reinforced concrete (HPC) columns subjected to monotonic axial loading. Reinforced columns made of self-consolidating concrete (SCC), engineered cementitious composite (ECC) and ultra-high performance concrete (UHPC) were tested to failure under axial loading. The test variables included concrete strength and length/slenderness of columns (classified as short and long columns). The UHPC and ECC columns demonstrated excellent ductility and higher energy absorbing capacity compared to their SCC counterparts. UHPC columns also illustrated higher ultimate load capacity compared to both ECC and SCC columns. The efficiency of UHPC and ECC columns was also judged based on strength and ductility ratio compared to their SCC counterparts. Existing models and other Code based equations were used to predict the axial load capacity as a part of analytical investigation. The predictions suggested the need for the modification of existing models/Code based equations for UHPC and ECC columns
Effective State Metamorphosis in Semi-Classical Loop Quantum Cosmology
Modification to the behavior of geometrical density at short scales is a key
result of loop quantum cosmology, responsible for an interesting phenomenology
in the very early universe. We demonstrate the way matter with arbitrary scale
factor dependence in Hamiltonian incorporates this change in its effective
dynamics in the loop modified phase. For generic matter, the equation of state
starts varying near a critical scale factor, becomes negative below it and
violates strong energy condition. This opens a new avenue to generalize various
phenomenological applications in loop quantum cosmology. We show that different
ways to define energy density may yield radically different results, especially
for the case corresponding to classical dust. We also discuss implications for
frequency dispersion induced by modification to geometric density at small
scales.Comment: Revised version; includes expanded discussion of natural
trans-Planckian modifications to frequency dispersion and robustness to
quantization ambiguities. To appear in Class. Quant. Gra
Estimating Blood Pressure from Photoplethysmogram Signal and Demographic Features using Machine Learning Techniques
Hypertension is a potentially unsafe health ailment, which can be indicated
directly from the Blood pressure (BP). Hypertension always leads to other
health complications. Continuous monitoring of BP is very important; however,
cuff-based BP measurements are discrete and uncomfortable to the user. To
address this need, a cuff-less, continuous and a non-invasive BP measurement
system is proposed using Photoplethysmogram (PPG) signal and demographic
features using machine learning (ML) algorithms. PPG signals were acquired from
219 subjects, which undergo pre-processing and feature extraction steps. Time,
frequency and time-frequency domain features were extracted from the PPG and
their derivative signals. Feature selection techniques were used to reduce the
computational complexity and to decrease the chance of over-fitting the ML
algorithms. The features were then used to train and evaluate ML algorithms.
The best regression models were selected for Systolic BP (SBP) and Diastolic BP
(DBP) estimation individually. Gaussian Process Regression (GPR) along with
ReliefF feature selection algorithm outperforms other algorithms in estimating
SBP and DBP with a root-mean-square error (RMSE) of 6.74 and 3.59 respectively.
This ML model can be implemented in hardware systems to continuously monitor BP
and avoid any critical health conditions due to sudden changes.Comment: Accepted for publication in Sensor, 14 Figures, 14 Table
A highly efficient two level diamond based single photon source
An unexplored diamond defect centre which is found to emit stable single
photons at a measured rate of 1.6 MHz at room temperature is reported. The
novel centre, identified in chemical vapour deposition grown diamond crystals,
exhibits a sharp zero phonon line at 734 nm with a full width at half maximum
of ~ 4 nm. The photon statistics confirm the center is a single emitter and
provides direct evidence of the first true two-level single quantum system in
diamond.Comment: 3 pages, 4 figure
Playing relativistic billiards beyond graphene
The possibility of using hexagonal structures in general and graphene in
particular to emulate the Dirac equation is the basis of our considerations. We
show that Dirac oscillators with or without restmass can be emulated by
distorting a tight binding model on a hexagonal structure. In a quest to make a
toy model for such relativistic equations we first show that a hexagonal
lattice of attractive potential wells would be a good candidate. First we
consider the corresponding one-dimensional model giving rise to a
one-dimensional Dirac oscillator, and then construct explicitly the
deformations needed in the two-dimensional case. Finally we discuss, how such a
model can be implemented as an electromagnetic billiard using arrays of
dielectric resonators between two conducting plates that ensure evanescent
modes outside the resonators for transversal electric modes, and describe an
appropriate experimental setup.Comment: 23 pages, 8 figures. Submitted to NJ
Ferromagnetic Ordering in CeIr2B2: Transport, magnetization, specific heat and NMR studies
We present a complete characterization of ferromagnetic system CeIr2B2 using
powder x-ray diffraction XRD, magnetic susceptibility chi(T), isothermal
magnetization M(H), specific heat C(T), electrical resistivity rho(T,H), and
thermoelectric power S(T) measurements. Furthermore 11B NMR study was performed
to probe the magnetism on a microscopic scale. The chi(T), C(T) and rho(T) data
confirm bulk ferromagnetic ordering with Tc = 5.1 K. Ce ions in CeIr2B2 are in
stable trivalent state. Our low-temperature C(T) data measured down to 0.4 K
yield Sommerfeld coefficient gamma = 73(4) mJ/molK2 which is much smaller than
the previously reported value of gamma = 180 mJ/molK2 deduced from the specific
heat measurement down to 2.5 K. For LaIr2B2 gamma = 6(1) mJ/molK2 which implies
the density of states at the Fermi level D(EF) = 2.54 states/(eV f.u.) for both
spin directions. The renormalization factor for quasi-particle density of
states and hence for quasi-particle mass due to 4f correlations in CeIr2B2 is
12. The Kondo temperature TK ~ 4 K is estimated from the jump in specific heat
of CeIr2B2 at Tc. Both C(T) and rho(T) data exhibit gapped-magnon behavior in
magnetically ordered state with an energy gap Eg ~ 3.5 K. The rho data as a
function of magnetic field H indicate a large negative magnetoresistance (MR)
which is highest for T = 5 K.While at 5 K the negative MR keeps on increasing
up to 10 T, at 2 K an upturn is observed near H = 3.5 T. On the other hand, the
thermoelectric power data have small absolute values (S ~ 7 {\mu}V/K)
indicating a weak Kondo interaction. A shoulder in S(T) at about 30 K followed
by a minimum at ~ 10 K is attributed to crystal electric field (CEF) effects
and the onset of magnetic ordering. 11B NMR line broadening provides strong
evidence of ferromagnetic correlations below 40 K.Comment: 10 pages, 11 figure
Effect of Tree Litter Application on Lowland Rice Yield in Bangladesh
The effect of tree litters on rice yield (cv. BR11) was evaluated in the study. Four kinds of tree litter, i.e., ipil-ipil or lamtoro (Leucaena leucocephala (Lamk) De Witt), sissoo (Dalbergia sissoo), akashmoni (Acacia auriculiformis) and mander (Erythrina orientalis) were incorporated into the soil 15 days before transplanting at rate of 5 ton/ha supplemented with inorganic fertilizers (83 kg N, 48 kg P205, 42 kg K20, 10 kg S and 3.6 kg Zn/ha). In the control plots only recommended inorganic fertilizer were applied. Results showed that tree litter application had a significantly positive effect on the yield parameters such as plant height, panicle length, tillers per hill, filled grain and index of 1000-grain weight. Grain yield of plots treated with ipil-ipil, sissoo, akashmoni and mander was 5.61, 4.49, 4.95 and 5.36 ton/ha, and the yield increased over control plots 39.6, 11.7, 23.1 and 33.3%, respectively. It is worthy to note that addition of tree litter to inorganic fertilizer produced significantly higher yield than inorganic fertilizers solely. Among the tree litter, ipil-ipil and mander had the greatest increase in rice yield, while akashmoni was intermediate and sissoo was the least
- …