82 research outputs found
A review on deep-learning-based cyberbullying detection
Bullying is described as an undesirable behavior by others that harms an individual physically, mentally, or socially. Cyberbullying is a virtual form (e.g., textual or image) of bullying or harassment, also known as online bullying. Cyberbullying detection is a pressing need in today’s world, as the prevalence of cyberbullying is continually growing, resulting in mental health issues. Conventional machine learning models were previously used to identify cyberbullying. However, current research demonstrates that deep learning surpasses traditional machine learning algorithms in identifying cyberbullying for several reasons, including handling extensive data, efficiently classifying text and images, extracting features automatically through hidden layers, and many others. This paper reviews the existing surveys and identifies the gaps in those studies. We also present a deep-learning-based defense ecosystem for cyberbullying detection, including data representation techniques and different deep-learning-based models and frameworks. We have critically analyzed the existing DL-based cyberbullying detection techniques and identified their significant contributions and the future research directions they have presented. We have also summarized the datasets being used, including the DL architecture being used and the tasks that are accomplished for each dataset. Finally, several challenges faced by the existing researchers and the open issues to be addressed in the future have been presented
Network Route Minimization Using Time Based Interface Control
The demand for networking is increasing day by day with the progressive need of communication. As a result the communication channel and state database are increased with correspondingly. A rise in the amount of state database maintenance is one of the important cost effective issues for communication devices. The most challenging think is router state database reducing. As of now, many different types of state table accomplishments method are proposed for router state database reducing. In this purpose, we apply and modify the SPF algorithm by time based interface control. Dijkstra’s SPF algorithms searching the shortest specific link among from the all link then build a router state database table. If the state table size is little amount, then router OS using little amount of clock cycle. Some of Network interface are down for a fixed amount of time in a router. Therefore, we proposed a time based interface control method on SPF algorithm for re-build a new state database table. The modified SPF time based interfaces control algorithm suggests a new approach on dynamic routing protocol for reducing routing table size and saving router state-database size, resulting in a better convergence time
Women’s Preferences for Maternal Healthcare Services in Bangladesh: Evidence from a Discrete Choice Experiment
Despite substantial improvements in several maternal health indicators, childbearing and birthing remain a dangerous experience for many women in Bangladesh. This study assessed the relative importance of maternal healthcare service characteristics to Bangladeshi women when choosing a health facility to deliver their babies. The study used a mixed-methods approach. Qualitative methods (expert interviews, focus group discussions) were initially employed to identify and develop the characteristics which most influence a women’s decision making when selecting a maternal health service facility. A discrete choice experiment (DCE) was then constructed to elicit women’s preferences. Women were shown choice scenarios representing hypothetical health facilities with nine attributes outlined. The women were then asked to rank the attributes they considered most important in the delivery of their future babies. A Hierarchical Bayes method was used to measure mean utility parameters. A total of 601 women completed the DCE survey. The model demonstrated significant predictive strength for actual facility choice for maternal health services. The most important attributes were the following: consistent access to a female doctor, the availability of branded drugs, respectful provider attitudes, a continuum of maternal healthcare including the availability of a c-section delivery and lower waiting times. Attended maternal healthcare utilisation rates are low despite the access to primary healthcare facilities. Further implementation of quality improvements in maternal healthcare facilities should be prioritised
Screening and quantification of antibiotic residues in poultry products and feed in selected areas of Bangladesh
Background and Aim: Antibiotic residues in livestock farming have been identified as a potential cause of antimicrobial resistance in humans and animals. This study aimed to determine whether antibiotic residues were present in the chicken meat, eggs, feces, and feed collected from all four districts in the Mymensingh division of Bangladesh.
Materials and Methods: To detect antibiotic residues in the collected samples, qualitative thin-layer chromatography (TLC) and quantitative high-performance liquid chromatography (HPLC) were used. A total of 230 samples were analyzed for commonly used 11 antibiotics residue. Out of these, 40 meats and 40 feces samples were collected from broilers and layers, 30 egg samples from duck and layer, and 120 feed samples from both broilers and layers from the study area. Thin-layer chromatography was used for screening the presence of antibiotic residues; TLC-positive samples were then subjected to further HPLC analysis to determine the residue concentrations.
Results: Thin-layer chromatography analysis revealed that 23.5% of the tested samples contained residues from six different antibiotic classes (tetracyclines, quinolones, beta-lactams, sulfonamides, aminoglycosides, and macrolides). Thin-layer chromatography analysis showed that 35% and 25% of the meat samples were positive for residues from the broiler and layer, respectively. About 15% and 30% of layer and duck egg samples had positive residues, respectively. Out of 120 feed samples analyzed, about 15.8% had various antibiotic residues. In addition, feces samples from broilers and layers had 50% and 35% antibiotic residues, respectively. A total of 2.5% meat and 3.3% egg samples had antibiotic residues above the maximum residue limit (MRL). Based on the findings of this study, the highest percentage of oxytetracycline, followed by doxycycline and ciprofloxacin, were detected in feed samples, and oxytetracycline was detected in meat and egg samples.
Conclusion: This study clearly showed the misuse of antibiotics in the poultry sector in Bangladesh. Although antibiotic residues below the MRL level are suitable for human consumption, they may result in antimicrobial drug resistance to pathogens
Results of the COVID-19 mental health international for the general population (COMET-G) study.
INTRODUCTION: There are few published empirical data on the effects of COVID-19 on mental health, and until now, there is no large international study. MATERIAL AND METHODS: During the COVID-19 pandemic, an online questionnaire gathered data from 55,589 participants from 40 countries (64.85% females aged 35.80 ± 13.61; 34.05% males aged 34.90±13.29 and 1.10% other aged 31.64±13.15). Distress and probable depression were identified with the use of a previously developed cut-off and algorithm respectively. STATISTICAL ANALYSIS: Descriptive statistics were calculated. Chi-square tests, multiple forward stepwise linear regression analyses and Factorial Analysis of Variance (ANOVA) tested relations among variables. RESULTS: Probable depression was detected in 17.80% and distress in 16.71%. A significant percentage reported a deterioration in mental state, family dynamics and everyday lifestyle. Persons with a history of mental disorders had higher rates of current depression (31.82% vs. 13.07%). At least half of participants were accepting (at least to a moderate degree) a non-bizarre conspiracy. The highest Relative Risk (RR) to develop depression was associated with history of Bipolar disorder and self-harm/attempts (RR = 5.88). Suicidality was not increased in persons without a history of any mental disorder. Based on these results a model was developed. CONCLUSIONS: The final model revealed multiple vulnerabilities and an interplay leading from simple anxiety to probable depression and suicidality through distress. This could be of practical utility since many of these factors are modifiable. Future research and interventions should specifically focus on them
Assessing performance of the Healthcare Access and Quality Index, overall and by select age groups, for 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019
Background: Health-care needs change throughout the life course. It is thus crucial to assess whether health systems provide access to quality health care for all ages. Drawing from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019), we measured the Healthcare Access and Quality (HAQ) Index overall and for select age groups in 204 locations from 1990 to 2019. Methods: We distinguished the overall HAQ Index (ages 0–74 years) from scores for select age groups: the young (ages 0–14 years), working (ages 15–64 years), and post-working (ages 65–74 years) groups. For GBD 2019, HAQ Index construction methods were updated to use the arithmetic mean of scaled mortality-to-incidence ratios (MIRs) and risk-standardised death rates (RSDRs) for 32 causes of death that should not occur in the presence of timely, quality health care. Across locations and years, MIRs and RSDRs were scaled from 0 (worst) to 100 (best) separately, putting the HAQ Index on a different relative scale for each age group. We estimated absolute convergence for each group on the basis of whether the HAQ Index grew faster in absolute terms between 1990 and 2019 in countries with lower 1990 HAQ Index scores than countries with higher 1990 HAQ Index scores and by Socio-demographic Index (SDI) quintile. SDI is a summary metric of overall development. Findings: Between 1990 and 2019, the HAQ Index increased overall (by 19·6 points, 95% uncertainty interval 17·9–21·3), as well as among the young (22·5, 19·9–24·7), working (17·2, 15·2–19·1), and post-working (15·1, 13·2–17·0) age groups. Large differences in HAQ Index scores were present across SDI levels in 2019, with the overall index ranging from 30·7 (28·6–33·0) on average in low-SDI countries to 83·4 (82·4–84·3) on average in high-SDI countries. Similarly large ranges between low-SDI and high-SDI countries, respectively, were estimated in the HAQ Index for the young (40·4–89·0), working (33·8–82·8), and post-working (30·4–79·1) groups. Absolute convergence in HAQ Index was estimated in the young group only. In contrast, divergence was estimated among the working and post-working groups, driven by slow progress in low-SDI countries. Interpretation: Although major gaps remain across levels of social and economic development, convergence in the young group is an encouraging sign of reduced disparities in health-care access and quality. However, divergence in the working and post-working groups indicates that health-care access and quality is lagging at lower levels of social and economic development. To meet the needs of ageing populations, health systems need to improve health-care access and quality for working-age adults and older populations while continuing to realise gains among the young. Funding: Bill & Melinda Gates Foundation
Impact of opioid-free analgesia on pain severity and patient satisfaction after discharge from surgery: multispecialty, prospective cohort study in 25 countries
Background: Balancing opioid stewardship and the need for adequate analgesia following discharge after surgery is challenging. This study aimed to compare the outcomes for patients discharged with opioid versus opioid-free analgesia after common surgical procedures.Methods: This international, multicentre, prospective cohort study collected data from patients undergoing common acute and elective general surgical, urological, gynaecological, and orthopaedic procedures. The primary outcomes were patient-reported time in severe pain measured on a numerical analogue scale from 0 to 100% and patient-reported satisfaction with pain relief during the first week following discharge. Data were collected by in-hospital chart review and patient telephone interview 1 week after discharge.Results: The study recruited 4273 patients from 144 centres in 25 countries; 1311 patients (30.7%) were prescribed opioid analgesia at discharge. Patients reported being in severe pain for 10 (i.q.r. 1-30)% of the first week after discharge and rated satisfaction with analgesia as 90 (i.q.r. 80-100) of 100. After adjustment for confounders, opioid analgesia on discharge was independently associated with increased pain severity (risk ratio 1.52, 95% c.i. 1.31 to 1.76; P < 0.001) and re-presentation to healthcare providers owing to side-effects of medication (OR 2.38, 95% c.i. 1.36 to 4.17; P = 0.004), but not with satisfaction with analgesia (beta coefficient 0.92, 95% c.i. -1.52 to 3.36; P = 0.468) compared with opioid-free analgesia. Although opioid prescribing varied greatly between high-income and low- and middle-income countries, patient-reported outcomes did not.Conclusion: Opioid analgesia prescription on surgical discharge is associated with a higher risk of re-presentation owing to side-effects of medication and increased patient-reported pain, but not with changes in patient-reported satisfaction. Opioid-free discharge analgesia should be adopted routinely
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic
Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. METHODS: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. FINDINGS: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. INTERPRETATION: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic. FUNDING: Bill & Melinda Gates Foundation
- …