4 research outputs found

    Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: A numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks

    Full text link
    CsPbI3 has recently received tremendous attention as a possible absorber of perovskite solar cells (PSCs). However, CsPbI3-based PSCs have yet to achieve the high performance of the hybrid PSCs. In this work, we performed a density functional theory (DFT) study using the Cambridge Serial Total Energy Package (CASTEP) code for the cubic CsPbI3 absorber to compare and evaluate its structural, electronic, and optical properties. The calculated electronic band gap (Eg) using the GGA-PBE approach of CASTEP was 1.483 eV for this CsPbI3 absorber. Moreover, the computed density of states (DOS) exhibited the dominant contribution from the Pb-5d orbital, and most charge also accumulated for the Pb atom as seen from the electronic charge density map. Fermi surface calculation showed multiband character, and optical properties were computed to investigate the optical response of CsPbI3. Furthermore, we used IGZO, SnO2, WS2, CeO2, PCBM, TiO2, ZnO, and C60 as the electron transport layers (ETLs), and Cu2O, CuSCN, CuSbS2, Spiro-MeOTAD, V2O5, CBTS, CFTS, P3HT, PEDOT: PSS, NiO, CuO, and CuI as the hole transport layers (HTLs) to identify the best HTL/CsPbI3/ETL combinations using the SCAPS-1D solar cell simulation software. Among 96 device structures, the best-optimized device structure, ITO/TiO2/CsPbI3/CBTS/Au was identified, which exhibited an efficiency of 17.9%. The effect of absorber and ETL thickness, series resistance, shunt resistance, and operating temperature was also evaluated for the six best devices along with their corresponding generation rate, recombination rate, capacitance-voltage, current density-voltage, and quantum efficiency characteristics. The obtained results from SCAPS-1D were also compared with wxAMPS simulation software.Comment: 34 pages, 12 figures, Supporting Information (3 figures

    A clinical study of arrhythmias associated with acute coronary syndrome: a hospital based study of a high risk and previously undocumented population

    Get PDF
    Background: ACS represents a global epidemic. Arrhythmia in ACS is common. Careful investigation may lead to further improvement of prognosis. Retrospectively analyzed the year- round data of our center. Study was undertaken to analyze the incidence, frequency and type of arrhythmias in ACS. This is to aid timely intervention and to modify the outcome. Identification of the type of arrhythmia is of therapeutic and prognostic importance.Methods: This cross sectional analytical study was conducted in the Department of Cardiology, Apollo Hospitals Dhaka, from January 2019 to January 2020 with ACS patients. Enrolled consecutively and data analyzed.Results: There were 500 patients enrolled considering inclusion and exclusion criteria. Sample was subdivided into 3 groups on the type of ACS. Group-I with UA, Group-II with NSTE - ACS and Group-III with STE - ACS. Different types of arrhythmia noted. Types of arrhythmia were correlated with type of ACS. 500 patients included. Mean age 55.53±12.70, 71.6% male and 28.4% female. 60.4% hypertensive, 46.2% diabetic, 20.2% positive family history of CAD, 32.2% current smoker, 56.4% dyslipidaemic and 9.6% asthmatic. 31.2% UA, 39.2% NSTE-ACS and 29.6% STE-ACS. Type of arrhythmias noted. 22% sinus tachycardia, 20.2% sinus bradycardia, 9% atrial fibrillation, 5.2% ventricular ectopic, 4.8% supra ventricular ectopic, 2.8% bundle branch block, 2.2% atrio-ventricular block, 1% broad complex tachycardia, 0.4% narrow complex tachycardia, 0.2% sinus node dysfunction and 32.2% without any arrhythmia. Significant incidences of arrhythmia detected - respectively 29.8%, 39.2% and 31%, p<0.001.Conclusions: In conclusion, arrhythmias in ACS are common. More attention should be paid to improve their treatment and prognosis

    Muslims of West Bengal: Some Demographic, Socio-Economic and Educational Situation

    No full text
    Practically research studies on Muslim society and culture in West Bengal are very negligible owing to which very inadequate is known to the people and such lacuna in knowledge have caused a great amount of  loophole in understanding  the society under study from empirical point of view. The present account is a modest attempt to assess and enquire the socio-economic situation of the Muslims including both males and females of West Bengal besides presenting some demographic profile of the Muslims of West Bengal compared to the people of other religious communities of the state. Emphasis has also been given to find out the contributory factors acting as obstacle towards their socio-economic development, change and modernization. For this endeavor the textual facts are mostly gathered from a variety of in print resources while the primary data are mainly the author’s personal observations and field study among the Muslims of this state. Keywords: Muslims, society, economy, demography, backwardness, development

    Design and numerical analysis of CIGS-based solar cell with V2O5 as the BSF layer to enhance photovoltaic performance

    No full text
    Copper indium gallium selenide (CIGS)-based solar cells have exhibited greater performance than the ones utilizing cadmium telluride (CdTe) or hydrogenated amorphous silicon (a-Si: H) as the absorber. CIGS-based devices are more efficient, considering their device performance, environmentally benign nature, and reduced cost. In this article, we proposed a potential CIGS-absorber-based solar cell with an FTO/ZnSe/CIGS/V2O5/Cu heterostructure, with a V2O5 back-surface field (BSF) layer, SnO2:F (FTO) window layer, and ZnSe buffer layer. Using the solar cell capacitance simulator one-dimensional simulation software, the effects of the presence of the BSF layer, the thickness, bulk defect density, and acceptor density of the absorber layer, buffer layer thickness, interfacial defect density, device resistance, and operating temperature on the open-circuit voltage, short-circuit current, fill factor, and efficiency, as well as on the quantum efficiency and recombination and generation rate, of the device have been explored in detail. The simulation results revealed that only a 1 μm-thick-CIGS absorber layer with V2O5 BSF and ZnSe buffer layers in this structure offers an outstanding efficiency of 31.86% with a VOC of ∼0.9 V. Thus, these outcomes of the CIGS-based proposed heterostructure provide an insightful pathway for fabricating high-efficiency solar cells with performance more promising than the previously reported conventional designs
    corecore