241 research outputs found

    Gauge-Higgs Unification and Quark-Lepton Phenomenology in the Warped Spacetime

    Full text link
    In the dynamical gauge-Higgs unification of electroweak interactions in the Randall-Sundrum warped spacetime the Higgs boson mass is predicted in the range 120 GeV -- 290 GeV, provided that the spacetime structure is determined at the Planck scale. Couplings of quarks and leptons to gauge bosons and their Kaluza-Klein (KK) excited states are determined by the masses of quarks and leptons. All quarks and leptons other than top quarks have very small couplings to the KK excited states of gauge bosons. The universality of weak interactions is slightly broken by magnitudes of 10−810^{-8}, 10−610^{-6} and 10−210^{-2} for μ\mu-ee, τ\tau-ee and tt-ee, respectively. Yukawa couplings become substantially smaller than those in the standard model, by a factor |\cos \onehalf \theta_W| where θW\theta_W is the non-Abelian Aharonov-Bohm phase (the Wilson line phase) associated with dynamical electroweak symmetry breaking.Comment: 34 pages, 7 eps files, comments and a reference adde

    Large Gauge Hierarchy in Gauge-Higgs Unification

    Get PDF
    We study a five dimensional SU(3) nonsupersymmetric gauge theory compactified on M4×S1/Z2M^4\times S^1/Z_2 and discuss the gauge hierarchy in the scenario of the gauge-Higgs unification. Making use of calculability of the Higgs potential and a curious feature that coefficients in the potential are given by discrete values, we find two models, in which the large gauge hierarchy is realized, that is, the weak scale is naturally obtained from an unique large scale such as a grand unified theory scale or the Planck scale. The size of the Higgs mass is also discussed in each model. One of the models we find realizes both large gauge hierarchy and consistent Higgs mass, and shows that the Higgs mass becomes heavier as the compactified scale becomes smaller.Comment: 21 pages, no figures, version to appear in PR

    A possible minimal gauge-Higgs unification

    Full text link
    A possible minimal model of the gauge-Higgs unification based on the higher dimensional spacetime M^4 X (S^1/Z_2) and the bulk gauge symmetry SU(3)_C X SU(3)_W X U(1)_X is constructed in some details. We argue that the Weinberg angle and the electromagnetic current can be correctly identified if one introduces the extra U(1)_X above and a bulk scalar triplet. The VEV of this scalar as well as the orbifold boundary conditions will break the bulk gauge symmetry down to that of the standard model. A new neutral zero-mode gauge boson Z' exists that gains mass via this VEV. We propose a simple fermion content that is free from all the anomalies when the extra brane-localized chiral fermions are taken into account as well. The issues on recovering a standard model chiral-fermion spectrum with the masses and flavor mixing are also discussed, where we need to introduce the two other brane scalars which also contribute to the Z' mass in the similar way as the scalar triplet. The neutrinos can get small masses via a type I seesaw mechanism. In this model, the mass of the Z' boson and the compactification scale are very constrained as respectively given in the ranges: 2.7 TeV < m_Z' < 13.6 TeV and 40 TeV < 1/R < 200 TeV.Comment: 20 pages, revised versio

    Two loop finiteness of Higgs mass and potential in the gauge-Higgs unification

    Full text link
    The zero mode of an extra-dimensional component of gauge potentials serves as a 4D Higgs field in the gauge-Higgs unification. We examine QED on M4×S1M^4 \times S^1 and determine the mass and potential of a 4D Higgs field (the A5A_5 component) at the two loop level with gauge invariant reguralization. It is seen that the mass is free from divergences and independent of the renormalization scheme.Comment: 18 pages, 1 figur

    On Gauge Symmetry Breaking via Euclidean Time Component of Gauge Fields

    Get PDF
    We study gauge theories with/without an extra dimension at finite temperature, in which there are two kinds of order parameters of gauge symmetry breaking. The one is the zero mode of the gauge field for the Euclidean time direction and the other is that for the direction of the extra dimension. We evaluate the effective potential for the zero modes in one-loop approximation and investigate the vacuum configuration in detail. Our analyses show that gauge symmetry can be broken only through the zero mode for the direction of the extra dimension and no nontrivial vacuum configuration of the zero mode for the Euclidean time direction is found.Comment: 22 pages, 6 figures, references and typos corrected, version to appear in PR

    Gauge-Higgs Dark Matter

    Full text link
    When the anti-periodic boundary condition is imposed for a bulk field in extradimensional theories, independently of the background metric, the lightest component in the anti-periodic field becomes stable and hence a good candidate for the dark matter in the effective 4D theory due to the remaining accidental discrete symmetry. Noting that in the gauge-Higgs unification scenario, introduction of anti-periodic fermions is well-motivated by a phenomenological reason, we investigate dark matter physics in the scenario. As an example, we consider a five-dimensional SO(5)\timesU(1)_X gauge-Higgs unification model compactified on the S1/Z2S^1/Z_2 with the warped metric. Due to the structure of the gauge-Higgs unification, interactions between the dark matter particle and the Standard Model particles are largely controlled by the gauge symmetry, and hence the model has a strong predictive power for the dark matter physics. Evaluating the dark matter relic abundance, we identify a parameter region consistent with the current observations. Furthermore, we calculate the elastic scattering cross section between the dark matter particle and nucleon and find that a part of the parameter region is already excluded by the current experimental results for the direct dark matter search and most of the region will be explored in future experiments.Comment: 16 pages, 2 figure

    Dynamical symmetry breaking in Gauge-Higgs unification of 5D N=1{\mathcal N}=1 SUSY theory

    Full text link
    We study the dynamical symmetry breaking in the gauge-Higgs unification of the 5D N=1{\mathcal N}=1 SUSY theory, compactified on an orbifold, S1/Z2S^1/Z_2. This theory identifies Wilson line degrees of freedoms as ``Higgs doublets''. We consider SU(3)c×SU(3)WSU(3)_c \times SU(3)_W and SU(6) models, in which the gauge symmetries are reduced to SU(3)c×SU(2)L×U(1)YSU(3)_c \times SU(2)_L \times U(1)_Y and SU(3)c×SU(2)L×U(1)Y×U(1)SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1), respectively, through the orbifolding boundary conditions. Quarks and leptons are bulk fields, so that Yukawa interactions can be derived from the 5D gauge interactions. We estimate the one loop effective potential of ``Higgs doublets'', and analyze the vacuum structures in these two models. We find that the effects of bulk quarks and leptons destabilize the suitable electro-weak vacuum. We show that the introduction of suitable numbers of extra bulk fields possessing the suitable representations can realize the appropriate electro-weak symmetry breaking.Comment: 15 pages, 4 figures;disscutions on Higgs quartic couplings adde

    Effective theories of gauge-Higgs unification models in warped spacetime

    Full text link
    We derive four-dimensional (4D) effective theories of the gauge-Higgs unification models in the warped spacetime. The effective action can be expressed in a simple form by neglecting subleading corrections to the wave functions. We have shown in our previous works that some Higgs couplings to the other fields are suppressed by factors that depend on θˉH\bar{\theta}_H from the values in the standard model. Here θˉH\bar{\theta}_H is the Wilson line phase along the fifth dimension, which characterizes the electroweak symmetry breaking. The effective action derived here explicitly shows a nonlinear structure of the Higgs sector, which clarifies the origins of those suppression factors.Comment: 36 pages, 1 figur

    Non-local symmetry breaking in Kaluza-Klein theories

    Get PDF
    Scherk-Schwarz gauge symmetry breaking of a D-dimensional field theory model compactified on a circle is analyzed. It is explicitly shown that forbidden couplings in the unbroken theory appear in the one-loop effective action only in a non-local way, implying that they are finite at all orders in perturbation theory. This result can be understood as a consequence of the local gauge symmetry, but it holds true also in the global limit.Comment: v2: Wilson loop contributions and generalization to SU(N) included; references added. v3: version to appear in Phys. Rev. Let

    Multi-Higgs Mass Spectrum in Gauge-Higgs Unification

    Full text link
    We study an SU(2) supersymmetric gauge model in a framework of gauge-Higgs unification. Multi-Higgs spectrum appears in the model at low energy. We develop a useful perturbative approximation scheme for evaluating effective potential to study the multi-Higgs mass spectrum. We find that both tree-massless and massive Higgs scalars obtain mass corrections of similar size from finite parts of the loop effects. The corrections modify multi-Higgs mass spectrum, and hence, the loop effects are significant in view of future verifications of the gauge-Higgs unification scenario in high-energy experiments.Comment: 32 pages; typos corrected and a few comments added, published versio
    • …
    corecore