2,119 research outputs found

    Topological String Partition Functions as Polynomials

    Full text link
    We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus.Comment: 22 pages, 6 figures. v2:typos correcte

    Potential Profiling of the Nanometer-Scale Charge Depletion Layer in n-ZnO/p-NiO Junction Using Photoemission Spectroscopy

    Full text link
    We have performed a depth-profile analysis of an all-oxide p-n junction diode n-ZnO/p-NiO using photoemission spectroscopy combined with Ar-ion sputtering. Systematic core-level shifts were observed during the gradual removal of the ZnO overlayer, and were interpreted using a simple model based on charge conservation. Spatial profile of the potential around the interface was deduced, including the charge-depletion width of 2.3 nm extending on the ZnO side and the built-in potential of 0.54 eV

    Mechanism of phase transitions and the electronic density of states in (La,Sm)FeAsO1−x_{1-x}Fx_x from ab initio calculations

    Full text link
    The structure and electronic density of states in layered LnFeAsO1−x_{1-x}Fx_x (Ln=La,Sm; xx=0.0, 0.125, 0.25) are investigated using density functional theory. For the xx=0.0 system we predict a complex potential energy surface, formed by close-lying single-well and double-well potentials, which gives rise to the tetragonal-to-orthorhombic structural transition, appearance of the magnetic order, and an anomaly in the specific heat capacity observed experimentally at temperatures below ∼\sim140--160 K. We propose a mechanism for these transitions and suggest that these phenomena are generic to all compounds containing FeAs layers. For x>x>0.0 we demonstrate that transition temperatures to the superconducting state and their dependence on xx correlate well with the calculated magnitude of the electronic density of states at the Fermi energy.Comment: 4 pages, 3 figures, 1 tabl

    Electron localization and a confined electron gas in nanoporous inorganic electrides

    Get PDF
    The nanoporous main group oxide 12CaO.7Al(2)O(3) (C12A7) can be transformed from a wide-gap insulator to an electride where electrons substitute anions in cages constituting a positive frame. Our ab initio calculations of the electronic structure of this novel material give a consistent explanation of its high conductivity and optical properties. They show that the electrons confined in the inert positive frame are localized in cages and undergo hopping between neighboring cages. The results are useful for the understanding of behavior of confined electron gas of different topology and electron-phonon coupling, and for designing new transparent conductors, electron emitters, and electrides

    Polynomial Structure of the (Open) Topological String Partition Function

    Full text link
    In this paper we show that the polynomial structure of the topological string partition function found by Yamaguchi and Yau for the quintic holds for an arbitrary Calabi-Yau manifold with any number of moduli. Furthermore, we generalize these results to the open topological string partition function as discussed recently by Walcher and reproduce his results for the real quintic.Comment: 15 page

    Diffusive versus local spin currents in dynamic spin pumping systems

    Full text link
    Using microscopic theory, we investigate the properties of a spin current driven by magnetization dynamics. In the limit of smooth magnetization texture, the dominant spin current induced by the spin pumping effect is shown to be the diffusive spin current, i.e., the one arising from only a diffusion associated with spin accumulation. That is to say, there is no effective field that locally drives the spin current. We also investigate the conversion mechanism of the pumped spin current into a charge current by spin-orbit interactions, specifically the inverse spin Hall effect. We show that the spin-charge conversion does not always occur and that it depends strongly on the type of spin-orbit interaction. In a Rashba spin-orbit system, the local part of the charge current is proportional to the spin relaxation torque, and the local spin current, which does not arise from the spin accumulation, does not play any role in the conversion. In contrast, the diffusive spin current contributes to the diffusive charge current. Alternatively, for spin-orbit interactions arising from random impurities, the local charge current is proportional to the local spin current that constitutes only a small fraction of the total spin current. Clearly, the dominant spin current (diffusive spin current) is not converted into a charge current. Therefore, the nature of the spin current is fundamentally different depending on its origin and thus the spin transport and the spin-charge conversion behavior need to be discussed together along with spin current generation

    Observation of Jonscher Law in AC Hopping Conduction of Electron-Doped Nanoporous Crystal 12CaO7Al2O3 in THz Frequency Range

    Get PDF
    We have performed terahertz time-domain spectroscopy of carrier-doped nanoporous crystal 12CaO7Al2O3 showing the Mott variable range hopping at room temperature. The real part of the dielectric constant clearly demonstrates the nature of localized carriers. The frequency dependence of both the real and imaginary parts of the dielectric constant can be simply explained by assuming two contributions: a dielectric response by the parent compound with no carriers and an AC hopping conduction with the Jonscher law generally reported up to GHz range. The possible obedience to the Jonscher law in the THz range suggests a relaxation time of the hopping carriers much faster than 1ps in the carrier-doped 12CaO7Al2O3.Comment: 4pages 3figures. to be published in Phys. Rev.
    • …
    corecore