817 research outputs found

    Swing switching of spin-torque valves

    Full text link
    We propose a method for inducing magnetization reversal using an AC spin current polarized perpendicular to the equilibrium magnetization of the free magnetic layer. We show that the critical AC spin current is significantly smaller than the corresponding DC one. The effect is understood as a consequence of the underdamped nature of the spin-torque oscillators. It allows to use the kinetic inertia to overcome the residual energy barrier, rather than suppressing the latter by a large spin current. The effect is similar to a swing which may be set into high amplitude motion by a weak near-resonant push. The optimal AC frequency is identified as the upper bifurcation frequency of the corresponding driven nonlinear oscillator. Together with fast switching times it makes the perpendicular AC method to be the most efficient way to realize spin-torque memory valve.Comment: 8 pages, 11 figure

    Legacy: the Past to the Present and Men to Women

    Get PDF
    A concept of this design is to revive the disappearing beauty of the kimono and to regain Japanese tradition in clothing design by mixing historical and modern elements together

    Sensitivity of spin-torque diodes for frequency-tunable resonant microwave detection

    Full text link
    We calculate the efficiency with which magnetic tunnel junctions can be used as resonant detectors of incident microwave radiation via the spin-torque diode effect. The expression we derive is in good agreement with the sensitivities we measure for MgO-based magnetic tunnel junctions with an extended (unpatterned) magnetic pinned layer. However, the measured sensitivities are reduced below our estimate for a second set of devices in which the pinned layer is a patterned synthetic antiferromagnet (SAF). We suggest that this reduction may be due to an undesirable coupling between the magnetic free layer and one of the magnetic layers within the etched SAF. Our calculations suggest that optimized tunnel junctions should achieve sensitivities for resonant detection exceeding 10,000 mV/mW.Comment: 17 pages, 2 figure

    Charge pumping in magnetic tunnel junctions: Scattering theory

    Full text link
    We study theoretically the charge transport pumped by magnetization dynamics through epitaxial FIF and FNIF magnetic tunnel junctions (F: Ferromagnet, I: Insulator, N: Normal metal). We predict a small but measurable DC pumping voltage under ferromagnetic resonance conditions for collinear magnetization configurations, which may change sign as function of barrier parameters. A much larger AC pumping voltage is expected when the magnetizations are at right angles. Quantum size effects are predicted for an FNIF structure as a function of the normal layer thickness.Comment: 4 pages, 3 figures. to be published on Physical Review B Rapid Communicatio

    Magnetization reversal driven by spin-injection : a mesoscopic spin-transfer effect

    Full text link
    A mesoscopic description of spin-transfer effect is proposed, based on the spin-injection mechanism occurring at the junction with a ferromagnet. The effect of spin-injection is to modify locally, in the ferromagnetic configuration space, the density of magnetic moments. The corresponding gradient leads to a current-dependent diffusion process of the magnetization. In order to describe this effect, the dynamics of the magnetization of a ferromagnetic single domain is reconsidered in the framework of the thermokinetic theory of mesoscopic systems. Assuming an Onsager cross-coefficient that couples the currents, it is shown that spin-dependent electric transport leads to a correction of the Landau-Lifshitz-Gilbert equation of the ferromagnetic order parameter with supplementary diffusion terms. The consequence of spin-injection in terms of activation process of the ferromagnet is deduced, and the expressions of the effective energy barrier and of the critical current are derived. Magnetic fluctuations are calculated: the correction to the fluctuations is similar to that predicted for the activation. These predictions are consistent with the measurements of spin-transfer obtained in the activation regime and for ferromagnetic resonance under spin-injection.Comment: 20 pages, 2 figure

    Raft-derived tau-associated vesicles

    Get PDF
    Aims: Neurofibrillary tangles (NFTs), a cardinal pathological feature of neurodegenerative disorders, such as Alzheimer's disease (AD) are primarily composed of hyper‐phosphorylated tau protein. Recently, several other molecules, including flotillin‐1, phosphatidylinositol‐4,5‐bisphosphate [PtdIns(4,5)P2] and cyclin‐dependent kinase 5 (CDK5), have also been revealed as constituents of NFTs. Flotillin‐1 and PtdIns(4,5)P2 are considered markers of raft microdomains, whereas CDK5 is a tau kinase. Therefore, we hypothesized that NFTs have a relationship with raft domains and the tau phosphorylation that occurs within NFTs. Methods: We investigated six cases of AD, six cases of other neurodegenerative diseases with NFTs and three control cases. We analysed the PtdIns(4,5)P2‐immunopositive material in detail, using super‐resolution microscopy and electron microscopy to elucidate its pattern of expression. We also investigated the spatial relationship between the PtdIns(4,5)P2‐immunopositive material and tau kinases through double immunofluorescence analysis. Results: Pretangles contained either paired helical filaments (PHFs) or PtdIns(4,5)P2‐immunopositive small vesicles (approximately 1 μm in diameter) with nearly identical topology to granulovacuolar degeneration (GVD) bodies. Various combinations of these vesicles and GVD bodies, the latter of which are pathological hallmarks observed within the neurons of AD patients, were found concurrently in neurons. These vesicles and GVD bodies were both immunopositive not only for PtdIns(4,5)P2, but also for several tau kinases such as glycogen synthase kinase‐3β and spleen tyrosine kinase. Conclusions: These observations suggest that clusters of raft‐derived vesicles that resemble GVD bodies are substructures of pretangles other than PHFs. These tau kinase‐bearing vesicles are likely involved in the modification of tau protein and in NFT formation

    Distribution of the magnetization reversal duration in sub-ns spin-transfer switching

    Full text link
    We study the distribution of switching times in spin-transfer switching induced by sub-ns current pulses in pillar-shaped spin-valves. The pulse durations leading to switching follow a comb-like distribution, multiply-peaked at a few most probable, regularly spaced switching durations. These durations reflect the precessional nature of the switching, which occurs through a fluctuating integer number of precession cycles. This can be modeled considering the thermal variance of the initial magnetization orientations and the occurrence of vanishing total torque in the possible magnetization trajectories. Biasing the spin-valve with a hard axis field prevents some of these occurrences, and can provide an almost perfect reproducibility of the switching duration.Comment: submitted to PR
    • …
    corecore