998 research outputs found
Different Melting Behavior in Pentane and Heptane Monolayers on Graphite; Molecular Dynamics Simulations
Molecular dynamics simulations are utilized to study the melting transition
in pentane (C5H12) and heptane (C7H16), physisorbed onto the basal plane of
graphite at near-monolayer coverages. Through use of the newest, optimized
version of the anisotropic united-atom model (AUA4) to simulate both systems at
two separate coverages, this study provides evidence that the melting
transition for pentane and heptane monolayers are significantly different.
Specifically, this study proposes a very rapid transition from the solid
crystalline rectangular-centered (RC) phase to a fluid phase in pentane
monolayers, whereas heptane monolayers exhibit a slower transition that
involves a more gradual loss of RC order in the solid-fluid phase transition.
Through a study of the melting behavior, encompassing variations where the
formation of gauche defects in the alkyl chains are eliminated, this study
proposes that this gradual melting behavior for heptane monolayers is a result
of less orientational mobility of the heptane molecules in the solid RC phase,
as compared to the pentane molecules. This idea is supported through a study of
a nonane monolayer, which gives the gradual melting signature that heptane
monolayers also seem to indicate. The results of this work are compared to
previous experiment over pentane and heptane monolayers, and are found to be in
good agreement
Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: homogeneous/inhomogeneous transition of current distribution
Exotic features of a metal/oxide/metal (MOM) sandwich, which will be the
basis for a drastically innovative nonvolatile memory device, is brought to
light from a physical point of view. Here the insulator is one of the
ubiquitous and classic binary-transition-metal oxides (TMO), such as Fe2O3,
NiO, and CoO. The sandwich exhibits a resistance that reversibly switches
between two states: one is a highly resistive off-state and the other is a
conductive on-state. Several distinct features were universally observed in
these binary TMO sandwiches: namely, nonpolar switching, non-volatile threshold
switching, and current--voltage duality. From the systematic sample-size
dependence of the resistance in on- and off-states, we conclude that the
resistance switching is due to the homogeneous/inhomogeneous transition of the
current distribution at the interface.Comment: 7 pages, 5 figures, REVTeX4, submitted to Phys. Rev. B (Feb. 23,
2007). If you can't download a PDF file of this manscript, an alternative one
can be found on the author's website: http://staff.aist.go.jp/i.inoue
A mechanism for unipolar resistance switching in oxide non-volatile memory devices
Building on a recently introduced model for non-volatile resistive switching,
we propose a mechanism for unipolar resistance switching in
metal-insulator-metal sandwich structures. The commutation from the high to low
resistance state and back can be achieved with successive voltage sweeps of the
same polarity. Electronic correlation effects at the metal-insulator interface
are found to play a key role to produce a resistive commutation effect in
qualitative agreement with recent experimental reports on binary transition
metal oxide based sandwich structures.Comment: 4 pages, 2 figure
Structure evolution in electrorheological fluids flowing through microchannels
Enhanced knowledge of the transient behavior and characteristics of electrorheological (ER) fluids subject to time dependent electric fields offers the potential to advance the design of fast actuated hydraulic devices. In this study, the dynamic response of electrorheological fluid flows in rectilinear microchannels was investigated experimentally. Using high-speed microscopic imaging, the evolution of particle aggregates in ER fluids subjected to temporally stepwise electric fields was visualized. Nonuniform growth of the particle structures in the channel was observed and correlated to field strength and flow rate. Two competing time scales for structure growth were identified. Guided by experimental observations, we developed a phenomenological model to quantitatively describe and predict the evolution of microscale structures and the concomitant induced pressure gradient.United States. Defense Advanced Research Projects Agency. Maximum Mobility and Manipulation (M3) Progra
Fingerprinting Soft Materials: A Framework for Characterizing Nonlinear Viscoelasticity
We introduce a comprehensive scheme to physically quantify both viscous and
elastic rheological nonlinearities simultaneously, using an imposed large
amplitude oscillatory shear (LAOS) strain. The new framework naturally lends a
physical interpretation to commonly reported Fourier coefficients of the
nonlinear stress response. Additionally, we address the ambiguities inherent in
the standard definitions of viscoelastic moduli when extended into the
nonlinear regime, and define new measures which reveal behavior that is
obscured by conventional techniques.Comment: 10 pages, 3 figures, full-page double-space preprint forma
Yield Hardening of Electrorheological Fluids in Channel Flow
Electrorheological fluids offer potential for developing rapidly actuated hydraulic devices where shear forces or pressure-driven flow are present. In this study, the Bingham yield stress of electrorheological fluids with different particle volume fractions is investigated experimentally in wall-driven and pressure-driven flow modes using measurements in a parallel-plate rheometer and a microfluidic channel, respectively. A modified Krieger-Dougherty model can be used to describe the effects of the particle volume fraction on the yield stress and is in good agreement with the viscometric data. However, significant yield hardening in pressure-driven channel flow is observed and attributed to an increase and eventual saturation of the particle volume fraction in the channel. A phenomenological physical model linking the densification and consequent microstructure to the ratio of the particle aggregation time scale compared to the convective time scale is presented and used to predict the enhancement in yield stress in channel flow, enabling us to reconcile discrepancies in the literature between wall-driven and pressure-driven flows
Marangoni convection in droplets on superhydrophobic surfaces
We consider a small droplet of water sitting on top of a heated superhydrophobic surface. A toroidal convection pattern develops in which fluid is observed to rise along the surface of the spherical droplet and to accelerate downwards in the interior towards the liquid/solid contact point. The internal dynamics arise due to the presence of a vertical temperature gradient; this leads to a gradient in surface tension which in turn drives fluid away from the contact point along the interface. We develop a solution to this thermocapillary-driven Marangoni flow analytically in terms of streamfunctions. Quantitative comparisons between analytical and experimental results, as well as effective heat transfer coefficients, are presented.National Science Foundation (U.S.) (CTS-045609)National Science Foundation (U.S.) (CCF-0323672
Synthesis and properties of radiopaque polymer hydrogels: polyion complexes of copolymers of acrylamide derivatives having triiodophenyl and carboxyl groups and p-styrene sulfonate and polyallylamine
In order to pursue a possibility of application of radiopaque polymer hydrogels to vascular embolization, studies were done on synthesis of iodine-containing copolyanions and properties of their hydrogels with polycation via formation of polyion complexes. Acrylamide derivatives having triiodophenyl and carboxyl groups were synthesized and copolymerized with sodium styrene sulfonate at various molar ratios of initiator to monomer and temperatures. Hydrogels were prepared by mixing aqueous solutions of the obtained radiopaque copolyanions and polyallylamine. Embolization was examined by injection of these hydrogels into vein of a removed porcine kidney as a preliminary test for transcatheter arterial embolization (TAE) for hepatocellular carcinoma. It was found that the hydrogels prepared from the copolycation obtained under particular conditions give high X-ray contrasts of the vein and remained there, though copolycations with low molecular weights had a tendency to drain through the capillaries to the peripheral tissues. It is therefore concluded that the hydrogels examined in the present study are promising for vascular embolization
Inhibition of Casein Kinase 2 Modulates XBP1-GRP78 Arm of Unfolded Protein Responses in Cultured Glial Cells
Stress signals cause abnormal proteins to accumulate in the endoplasmic reticulum (ER). Such stress is known as ER stress, which has been suggested to be involved in neurodegenerative diseases, diabetes, obesity and cancer. ER stress activates the unfolded protein response (UPR) to reduce levels of abnormal proteins by inducing the production of chaperon proteins such as GRP78, and to attenuate translation through the phosphorylation of eIF2α. However, excessive stress leads to apoptosis by generating transcription factors such as CHOP. Casein kinase 2 (CK2) is a serine/threonine kinase involved in regulating neoplasia, cell survival and viral infections. In the present study, we investigated a possible linkage between CK2 and ER stress using mouse primary cultured glial cells. 4,5,6,7-tetrabromobenzotriazole (TBB), a CK2-specific inhibitor, attenuated ER stress-induced XBP-1 splicing and subsequent induction of GRP78 expression, but was ineffective against ER stress-induced eIF2α phosphorylation and CHOP expression. Similar results were obtained when endogenous CK2 expression was knocked-down by siRNA. Immunohistochemical analysis suggested that CK2 was present at the ER. These results indicate CK2 to be linked with UPR and to resist ER stress by activating the XBP-1-GRP78 arm of UPR
- …