4 research outputs found

    Integration between well logging and seismic reflection techniques for structural analysis and reservoir characterizations, Abu El Gharadig basin, Egypt

    Get PDF
    AbstractAbu El Gharadig basin is located in the northern part of the Western Desert, Egypt. Geophysical investigation in the form of thirty (3D) seismic lines and well logging data of five wells have been analyzed in the oil field BED-1 that is located in the northwestern part of Abu El Gharadig basin in the Western Desert of Egypt. The reflection sections have been used to shed more light on the tectonic setting of Late Jurassic–Early Cretaceous rocks. While the well logging data have been analyzed for delineating the petrophysical characteristics of the two main reservoirs, Bahariya and Kharita Formations. The constructed subsurface geologic cross sections, seismic sections, and the isochronous reflection maps indicate that the area is structurally controlled by tectonic trends affecting the current shape of Abu El Gharadig basin. Different types of faults are well represented in the area, particularly normal one. The analysis of the average and interval velocities versus depth has shown their effect by facies changes and/or fluid content. On the other hand, the derived petrophysical parameters of Bahariya and Kharita Formations vary from well to another and they have been affected by the gas effect and/or the presence of organic matter, complex lithology, clay content of dispersed habitat, and the pore volume

    Implementation of ground

    Get PDF
    Bahariya Oasis is one of the lately inspected spots in Egypt and has a long historical record extending from the old kingdom till the emergence of Islam. Since June 1999, the Valley of the Golden Mummies near Bawiti (at kilometer 6 on the road leads to Farafra Oasis) became significant due to the discoveries of amazing mummies of gelded faces. The archeologists believe that the Valley has more valuable tombs that still unrevealed. Also, the possibility that the Greco-Roman Necropolis extends to areas other than Kilo-6 is sustainable. The ground penetrating radar and electrical resistivity tomography are two geophysical tools that have successful applications in archeological assessment. The two techniques were used in integration plan to assert the archeological potentiality of the studied site and to map the feasible tombs. Sum of 798 GPR profiles and 19 ERT cross sections was carried out over the study area. The results of them were analyzed to envisage these results in archeological terms

    Evaluation of Groundwater Sensitivity to Pollution Using GIS-Based Modified DRASTIC-LU Model for Sustainable Development in the Nile Delta Region

    No full text
    The groundwater resources in the Nile Delta region are an important resource for freshwater because of rising water demand due to anthropogenic activities. The goal of this study is to quantify groundwater sensitivity to pollution in the Nile Delta by a modified GIS-based DRASTIC-LU model. In this study, we utilized two types of modified DRASTIC-LU models, generic and pesticide, to determine the groundwater vulnerability rates to contamination. The results of the generic DRASTIC-LU model showed that the research region, except for the northwestern part with moderate vulnerability of 3.38%, is highly and very highly vulnerable to pollution with 42.69 and 53.91%, respectively. Results from the pesticide DRASTIC-LU model, on the other hand, also confirmed that, except for the northwestern and southern parts with a moderate vulnerability of 9.78%, most the Nile Delta is highly and very highly vulnerable with 50.68 and 39.53%, respectively. A validation of the model generated was conducted based on nitrate concentrations in the groundwater and a sensitivity analysis. Based on the nitrate analysis, the final output map showed a strong association with the pesticide vulnerability model. Examining the model sensitivity revealed that the influence of depth to water and net recharge were the most important factors to consider

    Evaluation of Groundwater Sensitivity to Pollution Using GIS-Based Modified DRASTIC-LU Model for Sustainable Development in the Nile Delta Region

    No full text
    The groundwater resources in the Nile Delta region are an important resource for freshwater because of rising water demand due to anthropogenic activities. The goal of this study is to quantify groundwater sensitivity to pollution in the Nile Delta by a modified GIS-based DRASTIC-LU model. In this study, we utilized two types of modified DRASTIC-LU models, generic and pesticide, to determine the groundwater vulnerability rates to contamination. The results of the generic DRASTIC-LU model showed that the research region, except for the northwestern part with moderate vulnerability of 3.38%, is highly and very highly vulnerable to pollution with 42.69 and 53.91%, respectively. Results from the pesticide DRASTIC-LU model, on the other hand, also confirmed that, except for the northwestern and southern parts with a moderate vulnerability of 9.78%, most the Nile Delta is highly and very highly vulnerable with 50.68 and 39.53%, respectively. A validation of the model generated was conducted based on nitrate concentrations in the groundwater and a sensitivity analysis. Based on the nitrate analysis, the final output map showed a strong association with the pesticide vulnerability model. Examining the model sensitivity revealed that the influence of depth to water and net recharge were the most important factors to consider
    corecore