3 research outputs found

    From Prediction to Prescription: Intelligent Decision Support for Variable Rate Fertilization

    No full text
    We describe the use of machine learning methods in the analysis of spatial soil fertility, soil physical characteristics, and yield data, with a particular objective of determining local (field- to farm-scale) crop response patterns. For effective prescriptive use, the output of these tools is augmented with economic data and operational constraints, and recast as a rulebased decision support tool to maximize economic return in variable rate fertilization systems. We describe some of the practical issues addressed in development of one such system, including data preparation, adaptation of regression tree output for use in a rule-based expert system, and incorporation of real-world limits on system recommendations. Results from various field trials of this system are summarized
    corecore