72 research outputs found

    Consequences of relaxin-3 null mutation in mice on food-entrainable arousal

    Get PDF
    Relaxin-3/RXFP3 networks have been hypothesised to influence behavioural state based on their anatomical distribution and recent experimental findings in rat and mouse. Two arousal- related behaviours altered by changes in relaxin-3/RXFP3 signalling are feeding and voluntary running wheel activity. In particular, relaxin-3 null mutation (knockout) mice display a ‘dark-phase hypoactivity’ phenotype, reflected by reduced voluntary running wheel activity and increased sleeping behaviour, with no other major changes in basal behavioural profile. The present study compared the ability of relaxin-3 deficient (null mutation) and C57BL/6J wildtype littermate mice to entrain daily running wheel activity to timed food availability. Both genotypes adjusted to a restricted feeding paradigm of 3 hours access from ZT6 to ZT9 for 14 days and displayed increased running wheel activity in the 3 hour period prior to scheduled feeding, a phenomena termed food anticipatory activity. No significant difference in running wheel activity was observed between the genotypes, indicating that a whole-of-life relaxin-3 deficiency does not prevent entrainment to a restricted-feeding schedule. Further studies of the precise interaction between relaxin-3/RXFP3 signalling and the other major arousal networks are ongoing, using currently available and new strains of transgenic mice in combination with pharmacological and viral-based methods

    Broadly targeted human cytomegalovirus-specific CD4+ and CD8+ T cells dominate the memory compartments of exposed subjects

    Get PDF
    Human cytomegalovirus (HCMV) infections of immunocompetent hosts are characterized by a dynamic, life-long interaction in which host immune responses, particularly of T cells, restrain viral replication and prevent disease but do not eliminate the virus or preclude transmission. Because HCMV is among the largest and most complex of known viruses, the T cell resources committed to maintaining this balance have never been characterized completely. Here, using cytokine flow cytometry and 13,687 overlapping 15mer peptides comprising 213 HCMV open reading frames (ORFs), we found that 151 HCMV ORFs were immunogenic for CD4+ and/or CD8+ T cells, and that ORF immunogenicity was influenced only modestly by ORF expression kinetics and function. We further documented that total HCMV-specific T cell responses in seropositive subjects were enormous, comprising on average ∼10% of both the CD4+ and CD8+ memory compartments in blood, whereas cross-reactive recognition of HCMV proteins in seronegative individuals was limited to CD8+ T cells and was rare. These data provide the first glimpse of the total human T cell response to a complex infectious agent and will provide insight into the rules governing immunodominance and cross-reactivity in complex viral infections of humans

    Male × Female Interaction for a Pre-Copulatory Trait, but Not a Post-Copulatory Trait, among Cosmopolitan Populations of Drosophila melanogaster

    Get PDF
    Sexual coevolution occurs when changes in the phenotype of one sex select for changes in the other sex. We can identify the “footprint” of this coevolution by mating males and females from different populations and testing for a male-female genotype interaction for a trait associated with male (or female) performance. Here we mated male Drosophila melanogaster from five different continents with females from their own and different continents to test for a male-female interaction for mating speed, a pre-copulatory trait, and female reproductive investment, a post-copulatory trait. We found a strong male-female interaction for mating speed, consistent with previous studies using different populations, suggesting that the potential for sexual coevolution for this trait is present in this species. In contrast, we did not detect a male-female interaction for female reproductive investment. Although a male-female interaction for mating speed is compatible with the hypothesis of ongoing sexual coevolution, the nature of our experimental design is unable to exclude alternate explanations. Thus, the evolutionary mechanisms promoting male-female genotype interactions for pre-copulatory mating traits in D. melanogaster warrant further investigation

    A Live-Attenuated HSV-2 ICP0− Virus Elicits 10 to 100 Times Greater Protection against Genital Herpes than a Glycoprotein D Subunit Vaccine

    Get PDF
    Glycoprotein D (gD-2) is the entry receptor of herpes simplex virus 2 (HSV-2), and is the immunogen in the pharmaceutical industry's lead HSV-2 vaccine candidate. Efforts to prevent genital herpes using gD-2 subunit vaccines have been ongoing for 20 years at a cost in excess of $100 million. To date, gD-2 vaccines have yielded equivocal protection in clinical trials. Therefore, using a small animal model, we sought to determine if a live-attenuated HSV-2 ICP0− virus would elicit better protection against genital herpes than a gD-2 subunit vaccine. Mice immunized with gD-2 and a potent adjuvant (alum+monophosphoryl lipid A) produced high titers of gD-2 antibody. While gD-2-immunized mice possessed significant resistance to HSV-2, only 3 of 45 gD-2-immunized mice survived an overwhelming challenge of the vagina or eyes with wild-type HSV-2 (MS strain). In contrast, 114 of 115 mice immunized with a live HSV-2 ICP0− virus, 0ΔNLS, survived the same HSV-2 MS challenges. Likewise, 0ΔNLS-immunized mice shed an average 125-fold less HSV-2 MS challenge virus per vagina relative to gD-2-immunized mice. In vivo imaging demonstrated that a luciferase-expressing HSV-2 challenge virus failed to establish a detectable infection in 0ΔNLS-immunized mice, whereas the same virus readily infected naïve and gD-2-immunized mice. Collectively, these results suggest that a HSV-2 vaccine might be more likely to prevent genital herpes if it contained a live-attenuated HSV-2 virus rather than a single HSV-2 protein
    corecore