30 research outputs found

    BlackVIP: Black-Box Visual Prompting for Robust Transfer Learning

    Full text link
    With the surge of large-scale pre-trained models (PTMs), fine-tuning these models to numerous downstream tasks becomes a crucial problem. Consequently, parameter efficient transfer learning (PETL) of large models has grasped huge attention. While recent PETL methods showcase impressive performance, they rely on optimistic assumptions: 1) the entire parameter set of a PTM is available, and 2) a sufficiently large memory capacity for the fine-tuning is equipped. However, in most real-world applications, PTMs are served as a black-box API or proprietary software without explicit parameter accessibility. Besides, it is hard to meet a large memory requirement for modern PTMs. In this work, we propose black-box visual prompting (BlackVIP), which efficiently adapts the PTMs without knowledge about model architectures and parameters. BlackVIP has two components; 1) Coordinator and 2) simultaneous perturbation stochastic approximation with gradient correction (SPSA-GC). The Coordinator designs input-dependent image-shaped visual prompts, which improves few-shot adaptation and robustness on distribution/location shift. SPSA-GC efficiently estimates the gradient of a target model to update Coordinator. Extensive experiments on 16 datasets demonstrate that BlackVIP enables robust adaptation to diverse domains without accessing PTMs' parameters, with minimal memory requirements. Code: \url{https://github.com/changdaeoh/BlackVIP}Comment: Accepted to CVPR 202

    Evaluation of Penalized and Nonpenalized Methods for Disease Prediction with Large-Scale Genetic Data

    Get PDF
    Owing to recent improvement of genotyping technology, large-scale genetic data can be utilized to identify disease susceptibility loci and this successful finding has substantially improved our understanding of complex diseases. However, in spite of these successes, most of the genetic effects for many complex diseases were found to be very small, which have been a big hurdle to build disease prediction model. Recently, many statistical methods based on penalized regressions have been proposed to tackle the so-called "large P and small N" problem. Penalized regressions including least absolute selection and shrinkage operator (LASSO) and ridge regression limit the space of parameters, and this constraint enables the estimation of effects for very large number of SNPs. Various extensions have been suggested, and, in this report, we compare their accuracy by applying them to several complex diseases. Our results show that penalized regressions are usually robust and provide better accuracy than the existing methods for at least diseases under consideration

    Moving Object Tracking Based on Sparse Optical Flow with Moving Window and Target Estimator

    No full text
    Moving object detection and tracking are technologies applied to wide research fields including traffic monitoring and recognition of workers in surrounding heavy equipment environments. However, the conventional moving object detection methods have faced many problems such as much computing time, image noises, and disappearance of targets due to obstacles. In this paper, we introduce a new moving object detection and tracking algorithm based on the sparse optical flow for reducing computing time, removing noises and estimating the target efficiently. The developed algorithm maintains a variety of corner features with refreshed corner features, and the moving window detector is proposed to determine the feature points for tracking, based on the location history of the points. The performance of detecting moving objects is greatly improved through the moving window detector and the continuous target estimation. The memory-based estimator provides the capability to recall the location of corner features for a period of time, and it has an effect of tracking targets obscured by obstacles. The suggested approach was applied to real environments including various illumination (indoor and outdoor) conditions, a number of moving objects and obstacles, and the performance was evaluated on an embedded board (Raspberry pi4). The experimental results show that the proposed method maintains a high FPS (frame per seconds) and improves the accuracy performance, compared with the conventional optical flow methods and vision approaches such as Haar-like and Hog methods

    Gene selection and prediction for cancer classification using support vector machines with a reject option

    No full text
    In cancer classification based on gene expression data, it would be desirable to defer a decision for observations that are difficult to classify. For instance, an observation for which the conditional probability of being cancer is around 1/2 would preferably require more advanced tests rather than an immediate decision. This motivates the use of a classifier with a reject option that reports a warning in cases of observations that are difficult to classify. In this paper, we consider a problem of gene selection with a reject option. Typically, gene expression data comprise of expression levels of several thousands of candidate genes. In such cases, an effective gene selection procedure is necessary to provide a better understanding of the underlying biological system that generates data and to improve prediction performance. We propose a machine learning approach in which we apply the l1 penalty to the SVM with a reject option. This method is referred to as the l1 SVM with a reject option. We develop a novel optimization algorithm for this SVM, which is sufficiently fast and stable to analyze gene expression data. The proposed algorithm realizes an entire solution path with respect to the regularization parameter. Results of numerical studies show that, in comparison with the standard l1 SVM, the proposed method efficiently reduces prediction errors without hampering gene selectivity.Classification Reject option Support vector machines Lasso

    PGDRT: Prediction Demand Based on Graph Convolutional Network for Regional Demand-Responsive Transport

    No full text
    To provide an efficient demand-responsive transport (DRT) service, we established a model for predicting regional movement demand that reflects spatiotemporal characteristics. DRT facilitates the movement of restricted passengers. However, passengers with restrictions are highly dependent on transportation services, and there are large fluctuations in travel demand based on the region, time, and intermittent demand constraints. Without regional demand predictions, the gaps between the desired boarding times of passengers and the actual boarding times are significantly increased, resulting in inefficient transportation services with minimal movement and maximum costs. Therefore, it is necessary to establish a regional demand generation prediction model that reflects temporal features for efficient demand response service operations. In this study, a graph convolutional network model that performs demand prediction using spatial and temporal information was developed. The proposed model considers a region’s unique characteristics and the influence between regions through spatial information, such as the proximity between regions, convenience of transportation, and functional similarity. In addition, three types of temporal characteristics—adjacent visual characteristics, periodic characteristics, and representative characteristics—were defined to reflect past demand patterns. With the proposed demand forecasting model, measures can be taken, such as having empty vehicles move to areas where demand is expected or encouraging adjustment of the vehicle’s rest time to avoid congestion. Thus, fast and efficient transportation satisfying the movement demand of passengers with restrictions can be achieved, resulting in sustainable transportation
    corecore