47 research outputs found
Functional compensation of glutathione S-transferase M1 (GSTM1) null by another GST superfamily member,GSTM2
The gene for glutathione-S-transferase (GST) M1 (GSTM1), a member of the GST-superfamily, is widely studied in cancer risk with regard to the homozygous deletion of the gene (GSTM1 null), leading to a lack of corresponding enzymatic activity. Many of these studies have reported inconsistent findings regarding its association with cancer risk. Therefore, we employed in silico, in vitro, and in vivo approaches to investigate whether the absence of a functional GSTM1 enzyme in a null variant can be compensated for by other family members. Through the in silico approach, we identified maximum structural homology between GSTM1 and GSTM2. Total plasma GST enzymatic activity was similar in recruited individuals, irrespective of their GSTM1 genotype (positive/null). Furthermore, expression profiling using real-time PCR, western blotting,
and GSTM2 overexpression following transient knockdown of GSTM1 in HeLa cells confirmed that the absence of GSTM1 activity can be compensated for by the overexpression of GSTM
A Meta-Analysis of Caspase 9 Polymorphisms in Promoter and Exon Sequence on Cancer Susceptibility
BACKGROUND: Caspases are important regulators and executioners in apoptosis pathway and have been defined as either tumor suppressors or oncogenes. Polymorphisms in promoter and exon of caspase 9 were shown to confer genetic susceptibility to multiple cancers, but the results were inconsistent. To accomplish a more precise estimation of the relationship, a meta-analysis was performed. METHODOLOGY/PRINCIPAL FINDINGS: We assessed published studies of the association between caspase 9 polymorphisms and cancer risk from nine studies with 5,528 subjects for rs4645978, six studies with 2,403 subjects for rs105276 and two studies for rs4645981. Overall meta-analysis indicated that no evidence of an association between rs4645978 and cancers was found. Through the stratified analysis, statistically significant reduced cancer risks were observed among Caucasians (AG vs AA: OR = 0.81, 95% CI = 0.66-0.99, P(heterogeneity) = 0.150 and the dominant model: OR = 0.86, 95% CI = 0.75-0.99, P(heterogeneity) = 0.290) and prostate cancer. As for rs105276, Ex5+32G>A polymorphism was found with protective effect in overall meta-analysis (AA vs GG: OR = 0.75, 95% CI = 0.60-0.92, P(heterogeneity) = 0.887; A vs G: OR = 0.85, 95% CI = 0.77-0.95, P(heterogeneity) = 0.739 and the recessive model: OR = 0.68, 95% CI = 0.56-0.82, P(heterogeneity) = 0.309) and Asians group. While for rs4645981, a statistically significant increase in risk of lung cancer was shown in Asians (T vs C: OR = 1.23, 95% CI = 1.07-1.42, P(heterogeneity) = 0.399 and the dominant model: OR = 1.22, 95% CI = 1.04-1.43, P(heterogeneity) = 0.660). CONCLUSIONS/SIGNIFICANCE: Our meta-analysis suggests that the caspase 9 rs4645978 most likely contributes to decreased susceptibility to cancer in Caucasians and prostate cancer. The A allele of rs105276 might be a protective factor for cancer, especially for Asians. However, it seems that rs4645981 confers increased susceptibility to lung cancer in Asians
Shortened Telomere Length Is Associated with Increased Risk of Cancer: A Meta-Analysis
BACKGROUND: Telomeres play a key role in the maintenance of chromosome integrity and stability, and telomere shortening is involved in initiation and progression of malignancies. A series of epidemiological studies have examined the association between shortened telomeres and risk of cancers, but the findings remain conflicting. METHODS: A dataset composed of 11,255 cases and 13,101 controls from 21 publications was included in a meta-analysis to evaluate the association between overall cancer risk or cancer-specific risk and the relative telomere length. Heterogeneity among studies and their publication bias were further assessed by the χ(2)-based Q statistic test and Egger's test, respectively. RESULTS: The results showed that shorter telomeres were significantly associated with cancer risk (OR = 1.35, 95% CI = 1.14-1.60), compared with longer telomeres. In the stratified analysis by tumor type, the association remained significant in subgroups of bladder cancer (OR = 1.84, 95% CI = 1.38-2.44), lung cancer (OR = 2.39, 95% CI = 1.18-4.88), smoking-related cancers (OR = 2.25, 95% CI = 1.83-2.78), cancers in the digestive system (OR = 1.69, 95% CI = 1.53-1.87) and the urogenital system (OR = 1.73, 95% CI = 1.12-2.67). Furthermore, the results also indicated that the association between the relative telomere length and overall cancer risk was statistically significant in studies of Caucasian subjects, Asian subjects, retrospective designs, hospital-based controls and smaller sample sizes. Funnel plot and Egger's test suggested that there was no publication bias in the current meta-analysis (P = 0.532). CONCLUSIONS: The results of this meta-analysis suggest that the presence of shortened telomeres may be a marker for susceptibility to human cancer, but single larger, well-design prospective studies are warranted to confirm these findings
Association of Mitochondrial DNA Variations with Lung Cancer Risk in a Han Chinese Population from Southwestern China
Mitochondrial DNA (mtDNA) is particularly susceptible to oxidative damage and mutation due to the high rate of reactive oxygen species (ROS) production and limited DNA-repair capacity in mitochondrial. Previous studies demonstrated that the increased mtDNA copy number for compensation for damage, which was associated with cigarette smoking, has been found to be associated with lung cancer risk among heavy smokers. Given that the common and “non-pathological” mtDNA variations determine differences in oxidative phosphorylation performance and ROS production, an important determinant of lung cancer risk, we hypothesize that the mtDNA variations may play roles in lung cancer risk. To test this hypothesis, we conducted a case-control study to compare the frequencies of mtDNA haplogroups and an 822 bp mtDNA deletion between 422 lung cancer patients and 504 controls. Multivariate logistic regression analysis revealed that haplogroups D and F were related to individual lung cancer resistance (OR = 0.465, 95%CI = 0.329–0.656, p<0.001; and OR = 0.622, 95%CI = 0.425–0.909, p = 0.014, respectively), while haplogroups G and M7 might be risk factors for lung cancer (OR = 3.924, 95%CI = 1.757–6.689, p<0.001; and OR = 2.037, 95%CI = 1.253–3.312, p = 0.004, respectively). Additionally, multivariate logistic regression analysis revealed that cigarette smoking was a risk factor for the 822 bp mtDNA deletion. Furthermore, the increased frequencies of the mtDNA deletion in male cigarette smoking subjects of combined cases and controls with haplogroup D indicated that the haplogroup D might be susceptible to DNA damage from external ROS caused by heavy cigarette smoking
Interactions between household air pollution and GWAS-identified lung cancer susceptibility markers in the Female Lung Cancer Consortium in Asia (FLCCA)
[[sponsorship]]基因體研究中心[[note]]已出版;[SCI];有審查制度[[note]]http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=Drexel&SrcApp=hagerty_opac&KeyRecord=0340-6717&DestApp=JCR&RQ=IF_CAT_BOXPLO