2 research outputs found
Big Bang Nucleosynthesis and Particle Dark Matter
We review how our current understanding of the light element synthesis during
the Big Bang Nucleosynthesis era may help shed light on the identity of
particle dark matter.Comment: a mini-review for the NJP special issue on dark matte
A Bitter Pill: The Primordial Lithium Problem Worsens
The lithium problem arises from the significant discrepancy between the
primordial 7Li abundance as predicted by BBN theory and the WMAP baryon
density, and the pre-Galactic lithium abundance inferred from observations of
metal-poor (Population II) stars. This problem has loomed for the past decade,
with a persistent discrepancy of a factor of 2--3 in 7Li/H. Recent developments
have sharpened all aspects of the Li problem. Namely: (1) BBN theory
predictions have sharpened due to new nuclear data, particularly the
uncertainty on 3He(alpha,gamma)7Be, has reduced to 7.4%, and with a central
value shift of ~ +0.04 keV barn. (2) The WMAP 5-year data now yields a cosmic
baryon density with an uncertainty reduced to 2.7%. (3) Observations of
metal-poor stars have tested for systematic effects, and have reaped new
lithium isotopic data. With these, we now find that the BBN+WMAP predicts 7Li/H
= (5.24+0.71-0.67) 10^{-10}. The Li problem remains and indeed is exacerbated;
the discrepancy is now a factor 2.4--4.3 or 4.2sigma (from globular cluster
stars) to 5.3sigma (from halo field stars). Possible resolutions to the lithium
problem are briefly reviewed, and key nuclear, particle, and astronomical
measurements highlighted.Comment: 21 pages, 4 figures. Comments welcom