3 research outputs found

    A dual propagation contours technique for semi-automated assessment of systolic and diastolic cardiac function by CMR

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although cardiovascular magnetic resonance (CMR) is frequently performed to measure accurate LV volumes and ejection fractions, LV volume-time curves (VTC) derived ejection and filling rates are not routinely calculated due to lack of robust LV segmentation techniques. VTC derived peak filling rates can be used to accurately assess LV diastolic function, an important clinical parameter. We developed a novel geometry-independent dual-contour propagation technique, making use of LV endocardial contours manually drawn at end systole and end diastole, to compute VTC and measured LV ejection and filling rates in hypertensive patients and normal volunteers.</p> <p>Methods</p> <p>39 normal volunteers and 49 hypertensive patients underwent CMR. LV contours were manually drawn on all time frames in 18 normal volunteers. The dual-contour propagation algorithm was used to propagate contours throughout the cardiac cycle. The results were compared to those obtained with single-contour propagation (using either end-diastolic or end-systolic contours) and commercially available software. We then used the dual-contour propagation technique to measure peak ejection rate (PER) and peak early diastolic and late diastolic filling rates (ePFR and aPFR) in all normal volunteers and hypertensive patients.</p> <p>Results</p> <p>Compared to single-contour propagation methods and the commercial method, VTC by dual-contour propagation showed significantly better agreement with manually-derived VTC. Ejection and filling rates by dual-contour propagation agreed with manual (dual-contour – manual PER: -0.12 ± 0.08; ePFR: -0.07 ± 0.07; aPFR: 0.06 ± 0.03 EDV/s, all P = NS). However, the time for the manual method was ~4 hours per study versus ~7 minutes for dual-contour propagation. LV systolic function measured by LVEF and PER did not differ between normal volunteers and hypertensive patients. However, ePFR was lower in hypertensive patients vs. normal volunteers, while aPFR was higher, indicative of altered diastolic filling rates in hypertensive patients.</p> <p>Conclusion</p> <p>Dual-propagated contours can accurately measure both systolic and diastolic volumetric indices that can be applied in a routine clinical CMR environment. With dual-contour propagation, the user interaction that is routinely performed to measure LVEF is leveraged to obtain additional clinically relevant parameters.</p

    Quantification of pulmonary/systemic shunt ratio by single-acquisition phase-contrast cardiovascular magnetic resonance.

    No full text
    PURPOSE: Phase-contrast cardiovascular magnetic resonance (PC-CMR) quantification of intracardiac shunt (measuring the pulmonary to systemic flow ratio, Qp/Qs) is typically determined by measuring flow through planes perpendicular the pulmonary trunk (PA) and ascending aorta (Ao). This method is subject to error from presence of background velocity offsets and requires two scan acquisitions. We evaluated an alternate PC-CMR technique for quantifying Qp/Qs using a single modified plane that encompasses both the PA and Ao. MATERIAL AND METHODS: In 53 patients evaluated for intracardiac shunting, PC-CMR measurement in the individual Ao and PA planes and also in a single-acquisition plane was obtained and Qp/Qs calculated by each method. Bland-Altman analysis was performed to evaluate the agreement between the two methods. RESULTS: The 95% confidence limits of agreement ranged from -0.52 to +0.34 indicating good agreement between the two methods. There was excellent agreement on the clinically relevant threshold value of Qp/Qs ratio of 1.5 (representing criteria for surgical correction of shunt). CONCLUSIONS: Qp/Qs determined from the single-acquisition approach agrees well with that of the individual PA and Ao method and offers potential improved accuracy (due to background velocity offset)
    corecore