13 research outputs found

    Hsp47: a molecular chaperone that interacts with and stabilizes correctly-folded procollagen

    No full text
    Hsp47 is a heat-shock protein that interacts transiently with procollagen during its folding, assembly and transport from the endoplasmic reticulum (ER) of mammalian cells. It has been suggested to carry out a diverse range of functions, such as acting as a molecular chaperone facilitating the folding and assembly of procollagen molecules, retaining unfolded molecules within the ER, and assisting the transport of correctly folded molecules from the ER to the Golgi apparatus. Here we define the substrate recognition of Hsp47, demonstrating that it interacts preferentially with triple-helical procollagen molecules. The association of Hsp47 with procollagen coincides with the formation of a collagen triple helix. This demonstrates that Hsp47’s role in procollagen folding and assembly is distinct from that of prolyl 4-hydroxylase. These results indicate that Hsp47 acts as a novel molecular chaperone, potentially stabilizing the correctly folded collagen helix from heat denaturation before its transport from the ER

    High-dose green tea polyphenols induce nephrotoxicity in dextran sulfate sodium-induced colitis mice by down-regulation of antioxidant enzymes and heat-shock protein expressions

    No full text
    Previously, we reported that oral feeding of 1% green tea polyphenols (GTPs) aggravated the dextran sulfate sodium (DSS)-induced colitis in mice. In the present study, we assessed the toxicity of 1% GTPs in several organs from normal and DSS-exposed mice. Sixty-two male ICR mice were initially divided into four groups. Non-treated group (group 1, n = 15) was given standard diet and water, GTPs (group 2, n = 15) received 1% GTPs in diet and water, DSS (group 3, n = 15) received diet and 5% DSS in water, and GTPs + DSS group (group 4, n = 17) received 1% GTPs in diet and 5% DSS in water. We found that group 4 significantly increased (P < 0.05) kidney weight, the levels of serum creatinine and thiobarbituric acid-reactive substances in both kidney and liver, as compared with those in group 3. The mRNA expression levels of antioxidant enzymes and heat-shock proteins (HSPs) in group 4 were lower than those of group 3. For instance, heme oxygenase-1 (HO-1), HSP27, and 90 mRNA in the kidney of group 4 were dramatically down-regulated as compared with those of group 3. Furthermore, 1% GTPs diet decreased the expression of HO-1, NAD(P)H:quinone oxidoreductase 1 (NQO1) and HSP90 in kidney and liver of non-treated mice. Taken together, our results indicate that high-dose GTPs diet disrupts kidney functions through the reduction of antioxidant enzymes and heat-shock protein expressions in not only colitis but also non-treated ICR mice
    corecore