6,190 research outputs found

    Representation of Quantum Mechanical Resonances in the Lax-Phillips Hilbert Space

    Get PDF
    We discuss the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips SS-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to these resonances (eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips Hilbert space, and therefore all physical properties of the resonant states can be computed. We show that the Lax-Phillips SS-matrix is unitarily related to the SS-matrix of standard scattering theory by a unitary transformation parametrized by the spectral variable σ\sigma of the Lax-Phillips theory. Analytic continuation in σ\sigma has some of the properties of a method developed some time ago for application to dilation analytic potentials. We work out an illustrative example using a Lee-Friedrichs model for the underlying dynamical system.Comment: Plain TeX, 26 pages. Minor revision

    Schwinger Algebra for Quaternionic Quantum Mechanics

    Get PDF
    It is shown that the measurement algebra of Schwinger, a characterization of the properties of Pauli measurements of the first and second kinds, forming the foundation of his formulation of quantum mechanics over the complex field, has a quaternionic generalization. In this quaternionic measurement algebra some of the notions of quaternionic quantum mechanics are clarified. The conditions imposed on the form of the corresponding quantum field theory are studied, and the quantum fields are constructed. It is shown that the resulting quantum fields coincide with the fermion or boson annihilation-creation operators obtained by Razon and Horwitz in the limit in which the number of particles in physical states NN \to \infty.Comment: 20 pages, Plain Te

    Galilean limit of equilibrium relativistic mass distribution for indistinguishable events

    Full text link
    The relativistic distribution for indistinguishable events is considered in the mass-shell limit m2M2,m^2\cong M^2, where MM is a given intrinsic property of the events. The characteristic thermodynamic quantities are calculated and subject to the zero-mass and the high-temperature limits. The results are shown to be in agreement with the corresponding expressions of an on-mass-shell relativistic kinetic theory. The Galilean limit c,c\rightarrow \infty , which coincides in form with the low-temperature limit, is considered. The theory is shown to pass over to a nonrelativistic statistical mechanics of indistinguishable particles.Comment: Report TAUP-2136-9

    The EPR experiment in the energy-based stochastic reduction framework

    Full text link
    We consider the EPR experiment in the energy-based stochastic reduction framework. A gedanken set up is constructed to model the interaction of the particles with the measurement devices. The evolution of particles' density matrix is analytically derived. We compute the dependence of the disentanglement rate on the parameters of the model, and study the dependence of the outcome probabilities on the noise trajectories. Finally, we argue that these trajectories can be regarded as non-local hidden variables.Comment: 11 pages, 5 figure

    Hypercomplex quantum mechanics

    Full text link
    The fundamental axioms of the quantum theory do not explicitly identify the algebraic structure of the linear space for which orthogonal subspaces correspond to the propositions (equivalence classes of physical questions). The projective geometry of the weakly modular orthocomplemented lattice of propositions may be imbedded in a complex Hilbert space; this is the structure which has traditionally been used. This paper reviews some work which has been devoted to generalizing the target space of this imbedding to Hilbert modules of a more general type. In particular, detailed discussion is given of the simplest generalization of the complex Hilbert space, that of the quaternion Hilbert module.Comment: Plain Tex, 11 page

    Equilibrium Relativistic Mass Distribution for Indistinguishable Events

    Full text link
    A manifestly covariant relativistic statistical mechanics of the system of NN indistinguishable events with motion in space-time parametrized by an invariant ``historical time'' τ\tau is considered. The relativistic mass distribution for such a system is obtained from the equilibrium solution of the generalized relativistic Boltzmann equation by integration over angular and hyperbolic angular variables. All the characteristic averages are calculated. Expressions for the pressure and the density of events are found and the relativistic equation of state is obtained. The Galilean limit is considered; the theory is shown to pass over to the usual nonrelativistic statistical mechanics of indistinguishable particles.Comment: TAUP-2115-9

    Complexity, Tunneling and Geometrical Symmetry

    Full text link
    It is demonstrated in the context of the simple one-dimensional example of a barrier in an infinite well, that highly complex behavior of the time evolution of a wave function is associated with the almost degeneracy of levels in the process of tunneling. Degenerate conditions are obtained by shifting the position of the barrier. The complexity strength depends on the number of almost degenerate levels which depend on geometrical symmetry. The presence of complex behavior is studied to establish correlation with spectral degeneracy.Comment: 9 revtex pages, 6 Postscript figures (uuencoded

    Elongation of primed DNA templates by eukaryotic DNA polymerases.

    Full text link
    corecore