6,190 research outputs found
Representation of Quantum Mechanical Resonances in the Lax-Phillips Hilbert Space
We discuss the quantum Lax-Phillips theory of scattering and unstable
systems. In this framework, the decay of an unstable system is described by a
semigroup. The spectrum of the generator of the semigroup corresponds to the
singularities of the Lax-Phillips -matrix. In the case of discrete (complex)
spectrum of the generator of the semigroup, associated with resonances, the
decay law is exactly exponential. The states corresponding to these resonances
(eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips
Hilbert space, and therefore all physical properties of the resonant states can
be computed.
We show that the Lax-Phillips -matrix is unitarily related to the
-matrix of standard scattering theory by a unitary transformation
parametrized by the spectral variable of the Lax-Phillips theory.
Analytic continuation in has some of the properties of a method
developed some time ago for application to dilation analytic potentials.
We work out an illustrative example using a Lee-Friedrichs model for the
underlying dynamical system.Comment: Plain TeX, 26 pages. Minor revision
Schwinger Algebra for Quaternionic Quantum Mechanics
It is shown that the measurement algebra of Schwinger, a characterization of
the properties of Pauli measurements of the first and second kinds, forming the
foundation of his formulation of quantum mechanics over the complex field, has
a quaternionic generalization. In this quaternionic measurement algebra some of
the notions of quaternionic quantum mechanics are clarified. The conditions
imposed on the form of the corresponding quantum field theory are studied, and
the quantum fields are constructed. It is shown that the resulting quantum
fields coincide with the fermion or boson annihilation-creation operators
obtained by Razon and Horwitz in the limit in which the number of particles in
physical states .Comment: 20 pages, Plain Te
Galilean limit of equilibrium relativistic mass distribution for indistinguishable events
The relativistic distribution for indistinguishable events is considered in
the mass-shell limit where is a given intrinsic property of
the events. The characteristic thermodynamic quantities are calculated and
subject to the zero-mass and the high-temperature limits. The results are shown
to be in agreement with the corresponding expressions of an on-mass-shell
relativistic kinetic theory. The Galilean limit which
coincides in form with the low-temperature limit, is considered. The theory is
shown to pass over to a nonrelativistic statistical mechanics of
indistinguishable particles.Comment: Report TAUP-2136-9
The EPR experiment in the energy-based stochastic reduction framework
We consider the EPR experiment in the energy-based stochastic reduction
framework. A gedanken set up is constructed to model the interaction of the
particles with the measurement devices. The evolution of particles' density
matrix is analytically derived. We compute the dependence of the
disentanglement rate on the parameters of the model, and study the dependence
of the outcome probabilities on the noise trajectories. Finally, we argue that
these trajectories can be regarded as non-local hidden variables.Comment: 11 pages, 5 figure
Hypercomplex quantum mechanics
The fundamental axioms of the quantum theory do not explicitly identify the
algebraic structure of the linear space for which orthogonal subspaces
correspond to the propositions (equivalence classes of physical questions). The
projective geometry of the weakly modular orthocomplemented lattice of
propositions may be imbedded in a complex Hilbert space; this is the structure
which has traditionally been used. This paper reviews some work which has been
devoted to generalizing the target space of this imbedding to Hilbert modules
of a more general type. In particular, detailed discussion is given of the
simplest generalization of the complex Hilbert space, that of the quaternion
Hilbert module.Comment: Plain Tex, 11 page
Equilibrium Relativistic Mass Distribution for Indistinguishable Events
A manifestly covariant relativistic statistical mechanics of the system of
indistinguishable events with motion in space-time parametrized by an
invariant ``historical time'' is considered. The relativistic mass
distribution for such a system is obtained from the equilibrium solution of the
generalized relativistic Boltzmann equation by integration over angular and
hyperbolic angular variables. All the characteristic averages are calculated.
Expressions for the pressure and the density of events are found and the
relativistic equation of state is obtained. The Galilean limit is considered;
the theory is shown to pass over to the usual nonrelativistic statistical
mechanics of indistinguishable particles.Comment: TAUP-2115-9
Complexity, Tunneling and Geometrical Symmetry
It is demonstrated in the context of the simple one-dimensional example of a
barrier in an infinite well, that highly complex behavior of the time evolution
of a wave function is associated with the almost degeneracy of levels in the
process of tunneling. Degenerate conditions are obtained by shifting the
position of the barrier. The complexity strength depends on the number of
almost degenerate levels which depend on geometrical symmetry. The presence of
complex behavior is studied to establish correlation with spectral degeneracy.Comment: 9 revtex pages, 6 Postscript figures (uuencoded
- …