2,448 research outputs found

    Strange quark matter fragmentation in astrophysical events

    Get PDF
    The conjecture of Bodmer-Witten-Terazawa suggesting a form of quark matter (Strange Quark Matter) as the ground state of hadronic interactions has been studied in laboratory and astrophysical contexts by a large number of authors. If strange stars exist, some violent events involving these compact objects, such as mergers and even their formation process, might eject some strange matter into the interstellar medium that could be detected as a trace signal in the cosmic ray flux. To evaluate this possibility, it is necessary to understand how this matter in bulk would fragment in the form of strangelets (small lumps of strange quark matter in which finite effects become important). We calculate the mass distribution outcome using the statistical multifragmentation model and point out several caveats affecting it. In particular, the possibility that strangelets fragmentation will render a tiny fraction of contamination in the cosmic ray flux is discussed.Comment: 13 pages, 4 figure

    Interaction of strangelets with ordinary nuclei

    Full text link
    Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth's atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth's atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed

    Dark Matter, Dark Energy and Modern Cosmology: The Case For a Kuhnian Paradigm Shift

    Get PDF
    Several works in the last few years devoted to measure fundamental probes of contemporary cosmology have suggested the existence of a delocalized dominant component (the "dark energy”), in addition to the several-decade-old evidence for "dark matter” other than ordinary baryons, both assuming the description of gravity to be correct. Either we are faced to accept the ignorance of at least 95 % of the content of the universe or consider a deep change of the conceptual framework to understand the data. Thus, the situation seems to be completely favorable for a Kuhnian paradigm shiftin either particle physics or cosmology. We attempt to offer here a brief discussion of these issues from this particular perspective, arguing that the situation qualifies as a textbook Kuhnian anomaly, and offer a tentative identification of some of the actual elements typically associated with the paradigm shift process "in the works” in contemporary science

    Ten Years Of Latin-American Journal Of Astronomy Education RELEA: Achievements And Challenges For International Astronomy Education Development

    Get PDF
    This study reviews 10 years of Latin-American Journal of Astronomy Education (RELEA), showing that the journal has become a valuable resource for publishing and highlights its pathway as scholarly journal. Furthermore, it is also a call to astronomy education specialists to consolidate their efforts considering similar journals worldwide. Publishing policies of the RELEA and their context are presented in relation to submission, refereeing and publication. The 75 articles published in 18 editions are analyzed and classified. The results showed an acceptance rate of 60.2%; an average of 7.5 articles per year/4.2 per issue. RELEA´s authors are mostly based in Brazil (81.3%); articles target chiefly a school level (university education: 28.0%, high school: 28.0%); their main study focus is learning and teaching (34.7%) and general astronomy content (33.3%). Our results show that compared to other Brazilian journals of education, RELEA had twice as much astronomy articles. In the international scene there has been about a half of astronomy education research, but twice of astronomy in science education research. The challenges related to improve the article submission are discussed: how to increase their number, the submission of Latin American countries, and how to bring in the issues and subjects not addressed until now. It is also encouraged graduate studies, new lines of research in astronomy education, and advertising the journal in universities and schools for professors and teachers. Finally, future possibilities are mentioned given the International Astronomical Union’s development programs

    Deflection of ultra high energy cosmic rays by the galactic magnetic field: from the sources to the detector

    Get PDF
    We report the results of 3D simulations of the trajectories of ultra-high energy protons and Fe nuclei (with energies E=4×1019E = 4 \times 10^{19} and 2.5×1020eV2.5 \times 10^{20} eV) propagating through the galactic magnetic field from the sources to the detector. A uniform distribution of anti-particles is backtracked from the detector, at the Earth, to the halo of the Galaxy. We assume an axisymmetric, large scale spiral magnetic field permeating both the disc and the halo. A normal field component to the galactic plane (BzB_z) is also included in part of the simulations. We find that the presence of a large scale galactic magnetic field does not generally affect the arrival directions of the protons, although the inclusion of a BzB_z component may cause significant deflection of the lower energy protons (E=4×1019E = 4 \times 10^{19} eV). Error boxes larger than or equal to ∼5∘\sim 5^{\circ} are most expected in this case. On the other hand, in the case of heavy nuclei, the arrival direction of the particles is strongly dependent on the coordinates of the particle source. The deflection may be high enough (>20∘> 20^{\circ}) as to make extremely difficult any identification of the sources unless the real magnetic field configuration is accurately determined. Moreover, not every incoming particle direction is allowed between a given source and the detector. This generates sky patches which are virtually unobservable from the Earth. In the particular case of the UHE events of Yakutsk, Fly's Eye, and Akeno, they come from locations for which the deflection caused by the assumed magnetic field is not significant.Comment: LaTeX + 2 postscript figures - Color versions of both figures (highly recommended) available via anonymous ftp at ftp://capc07.ast.cam.ac.uk/pub/uhecr_gmf as fig*.g

    Mu and Tau Neutrino Thermalization and Production in Supernovae: Processes and Timescales

    Full text link
    We investigate the rates of production and thermalization of νμ\nu_\mu and ντ\nu_\tau neutrinos at temperatures and densities relevant to core-collapse supernovae and protoneutron stars. Included are contributions from electron scattering, electron-positron annihilation, nucleon-nucleon bremsstrahlung, and nucleon scattering. For the scattering processes, in order to incorporate the full scattering kinematics at arbitrary degeneracy, the structure function formalism developed by Reddy et al. (1998) and Burrows and Sawyer (1998) is employed. Furthermore, we derive formulae for the total and differential rates of nucleon-nucleon bremsstrahlung for arbitrary nucleon degeneracy in asymmetric matter. We find that electron scattering dominates nucleon scattering as a thermalization process at low neutrino energies (ϵν≲10\epsilon_\nu\lesssim 10 MeV), but that nucleon scattering is always faster than or comparable to electron scattering above ϵν≃10\epsilon_\nu\simeq10 MeV. In addition, for ρ≳1013\rho\gtrsim 10^{13} g cm−3^{-3}, T≲14T\lesssim14 MeV, and neutrino energies ≲60\lesssim60 MeV, nucleon-nucleon bremsstrahlung always dominates electron-positron annihilation as a production mechanism for νμ\nu_\mu and ντ\nu_\tau neutrinos.Comment: 29 pages, LaTeX (RevTeX), 13 figures, submitted to Phys. Rev. C. Also to be found at anonymous ftp site http://www.astrophysics.arizona.edu; cd to pub/thompso
    • …
    corecore