11,656 research outputs found

    Strange quark matter fragmentation in astrophysical events

    Get PDF
    The conjecture of Bodmer-Witten-Terazawa suggesting a form of quark matter (Strange Quark Matter) as the ground state of hadronic interactions has been studied in laboratory and astrophysical contexts by a large number of authors. If strange stars exist, some violent events involving these compact objects, such as mergers and even their formation process, might eject some strange matter into the interstellar medium that could be detected as a trace signal in the cosmic ray flux. To evaluate this possibility, it is necessary to understand how this matter in bulk would fragment in the form of strangelets (small lumps of strange quark matter in which finite effects become important). We calculate the mass distribution outcome using the statistical multifragmentation model and point out several caveats affecting it. In particular, the possibility that strangelets fragmentation will render a tiny fraction of contamination in the cosmic ray flux is discussed.Comment: 13 pages, 4 figure

    Interaction of strangelets with ordinary nuclei

    Full text link
    Strangelets (hypothetical stable lumps of strange quarkmatter) of astrophysical origin may be ultimately detected in specific cosmic ray experiments. The initial mass distribution resulting from the possible astrophysical production sites would be subject to reprocessing in the interstellar medium and in the earth's atmosphere. In order to get a better understanding of the claims for the detection of this still hypothetic state of hadronic matter, we present a study of strangelet-nucleus interactions including several physical processes of interest (abrasion, fusion, fission, excitation and de-excitation of the strangelets), to address the fate of the baryon number along the strangelet path. It is shown that, although fusion may be important for low-energy strangelets in the interstellar medium (thus increasing the initial baryon number A), in the earth's atmosphere the loss of the baryon number should be the dominant process. The consequences of these findings are briefly addressed

    On the mass distribution of neutron stars

    Full text link
    The distribution of masses for neutron stars is analyzed using the Bayesian statistical inference, evaluating the likelihood of proposed gaussian peaks by using fifty-four measured points obtained in a variety of systems. The results strongly suggest the existence of a bimodal distribution of the masses, with the first peak around 1.37M⊙1.37 {M_{\odot}}, and a much wider second peak at 1.73M⊙1.73 {M_{\odot}}. The results support earlier views related to the different evolutionary histories of the members for the first two peaks, which produces a natural separation (even if no attempt to "label" the systems has been made here), and argues against the single-mass scale viewpoint. The bimodal distribution can also accommodate the recent findings of ∼M⊙\sim M_{\odot} masses quite naturally. Finally, we explore the existence of a subgroup around 1.25M⊙1.25 {M_{\odot}}, finding weak, if any, evidence for it. This recently claimed low-mass subgroup, possibly related to O−Mg−NeO-Mg-Ne core collapse events, has a monotonically decreasing likelihood and does not stand out clearly from the rest of the sample.Comment: 11 pp., 3 figures, submitted to MNRAS Letter
    • …
    corecore