6,971 research outputs found

    Using evidence to inform health policy: case study

    Get PDF
    No abstract available

    Measurement of neutrino oscillation with KamLAND: Evidence of spectral distortion

    Get PDF
    We present results of a study of neutrino oscillation based on a 766 ton/year exposure of KamLAND to reactor antineutrinos. We observe 258 v_e candidate events with energies above 3.4 MeV compared to 365.2±23.7 events expected in the absence of neutrino oscillation. Accounting for 17.8±7.3 expected background events, the statistical significance for reactor v_e over bar (e) disappearance is 99.998%. The observed energy spectrum disagrees with the expected spectral shape in the absence of neutrino oscillation at 99.6% significance and prefers the distortion expected from v_e oscillation effects. A two-neutrino oscillation analysis of the KamLAND data gives Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2. A global analysis of data from KamLAND and solar-neutrino experiments yields Δm^2=7.9_(-0.5)^(+0.6)x10^(-5) eV^2 and tan^2θ=0.40_(-0.07)^(+0.10), the most precise determination to date

    Systematic limits on sin^2{2theta_{13}} in neutrino oscillation experiments with multi-reactors

    Full text link
    Sensitivities to sin^2{2theta_{13}} without statistical errors (``systematic limit'') are investigated in neutrino oscillation experiments with multiple reactors. Using an analytical approach, we show that the systematic limit on sin^2{2theta_{13}} is dominated by the uncorrelated systematic error sigma_u of the detector. Even in an experiment with multi-detectors and multi-reactors, it turns out that most of the systematic errors including the one due to the nature of multiple sources is canceled as in the case with a single reactor plus two detectors, if the near detectors are placed suitably. The case of the KASKA plan (7 reactors and 3 detectors) is investigated in detail, and it is explicitly shown that it does not suffer from the extra uncertainty due to multiple reactors.Comment: 26 pages, 10 eps-files, revtex

    High Sensitivity Search for v_e’s from the Sun and Other Sources at KamLAND

    Get PDF
    Data corresponding to a KamLAND detector exposure of 0.28 kton yr has been used to search for ν̅ _e’s in the energy range 8.3 < E_(ν̅e) < 14.8  MeV. No candidates were found for an expected background of 1.1±0.4 events. This result can be used to obtain a limit on ν̅_e fluxes of any origin. Assuming that all ν̅_e flux has its origin in the Sun and has the characteristic ^8B solar ν_e energy spectrum, we obtain an upper limit of 3.7×10^2  cm^(-2) ^(s-1) (90% C.L.) on the ν̅_e flux. We interpret this limit, corresponding to 2.8×10^(-4) of the standard solar model ^8B ν_e flux, in the framework of spin-flavor precession and neutrino decay models

    A prototypical small-molecule modulator uncouples mitochondria in response to endogenous hydrogen peroxide production

    Get PDF
    A high membrane potential across the mitochondrial inner membrane leads to the production of the reactive oxygen species (ROS) implicated in aging and age-related diseases. A prototypical drug for the correction of this type of mitochondrial dysfunction is presented. MitoDNP-SUM accumulates in mitochondria in response to the membrane potential due to its mitochondria-targeting alkyltriphenylphosphonium (TPP) cation and is uncaged by endogenous hydrogen peroxide to release the mitochondrial uncoupler, 2,4-dinitrophenol (DNP). DNP is known to reduce the high membrane potential responsible for the production of ROS. The approach potentially represents a general method for the delivery of drugs to the mitochondrial matrix through mitochondria targeting and H2O2-induced uncaging

    Advanced composite fuselage technology

    Get PDF
    Boeing's ATCAS program has completed its third year and continues to progress towards a goal to demonstrate composite fuselage technology with cost and weight advantages over aluminum. Work on this program is performed by an integrated team that includes several groups within The Boeing Company, industrial and university subcontractors, and technical support from NASA. During the course of the program, the ATCAS team has continued to perform a critical review of composite developments by recognizing advances in metal fuselage technology. Despite recent material, structural design, and manufacturing advancements for metals, polymeric matrix composite designs studied in ATCAS still project significant cost and weight advantages for future applications. A critical path to demonstrating technology readiness for composite transport fuselage structures was created to summarize ATCAS tasks for Phases A, B, and C. This includes a global schedule and list of technical issues which will be addressed throughout the course of studies. Work performed in ATCAS since the last ACT conference is also summarized. Most activities relate to crown quadrant manufacturing scaleup and performance verification. The former was highlighted by fabricating a curved, 7 ft. by 10 ft. panel, with cocured hat-stiffeners and cobonded J-frames. In building to this scale, process developments were achieved for tow-placed skins, drape formed stiffeners, braided/RTM frames, and panel cure tooling. Over 700 tests and supporting analyses have been performed for crown material and design evaluation, including structural tests that demonstrated limit load requirements for severed stiffener/skin failsafe damage conditions. Analysis of tests for tow-placed hybrid laminates with large damage indicates a tensile fracture toughness that is higher than that observed for advanced aluminum alloys. Additional recent ATCAS achievements include crown supporting technology, keel quadrant design evaluation, and sandwich process development
    • …
    corecore