13,910 research outputs found

    Further evidence for a stiff nuclear equation of state from a transverse-momentum analysis of Ar(1800 MeV/nucleon) + KCl

    Get PDF
    The novel momentum analysis technique introduced by Danielewicz and Odyniec can be used to detect and exhibit collective flow in the light system Ar(1800 MeV/nucleon) + KCl where the usual kinetic energy flow analysis fails. The microscopic Vlasov-Uehling-Uhlenbeck theory which includes the nuclear mean field, two-body collisions, and Pauli blocking is used to study this phenomenon. The resulting transverse momentum transfers turn out to be quite sensitive to the nuclear equation of state. From a comparison with experimental data, evidence is presented for a rather stiff nuclear equation of state. The cascade model is unable to describe the data

    Rationality and dynamic consistency under risk and uncertainty

    Get PDF
    For choice with deterministic consequences, the standard rationality hypothesis is ordinality - i.e., maximization of a weak preference ordering. For choice under risk (resp. uncertainty), preferences are assumed to be represented by the objectively (resp. subjectively) expected value of a von Neumann{Morgenstern utility function. For choice under risk, this implies a key independence axiom; under uncertainty, it implies some version of Savage's sure thing principle. This chapter investigates the extent to which ordinality, independence, and the sure thing principle can be derived from more fundamental axioms concerning behaviour in decision trees. Following Cubitt (1996), these principles include dynamic consistency, separability, and reduction of sequential choice, which can be derived in turn from one consequentialist hypothesis applied to continuation subtrees as well as entire decision trees. Examples of behavior violating these principles are also reviewed, as are possible explanations of why such violations are often observed in experiments

    SGR J1550–5418 Bursts Detected with the Fermi Gamma-Ray Burst Monitor during its Most Prolific Activity

    Get PDF
    We have performed detailed temporal and time-integrated spectral analysis of 286 bursts from SGR J1550–5418 detected with the Fermi Gamma-ray Burst Monitor (GBM) in 2009 January, resulting in the largest uniform sample of temporal and spectral properties of SGR J1550–5418 bursts. We have used the combination of broadband and high time-resolution data provided with GBM to perform statistical studies for the source properties. We determine the durations, emission times, duty cycles, and rise times for all bursts, and find that they are typical of SGR bursts. We explore various models in our spectral analysis, and conclude that the spectra of SGR J1550–5418 bursts in the 8-200 keV band are equally well described by optically thin thermal bremsstrahlung (OTTB), a power law (PL) with an exponential cutoff (Comptonized model), and two blackbody (BB) functions (BB+BB). In the spectral fits with the Comptonized model, we find a mean PL index of –0.92, close to the OTTB index of –1. We show that there is an anti-correlation between the Comptonized E_(peak) and the burst fluence and average flux. For the BB+BB fits, we find that the fluences and emission areas of the two BB functions are correlated. The low-temperature BB has an emission area comparable to the neutron star surface area, independent of the temperature, while the high-temperature BB has a much smaller area and shows an anti-correlation between emission area and temperature. We compare the properties of these bursts with bursts observed from other SGR sources during extreme activations, and discuss the implications of our results in the context of magnetar burst models

    Damping scales of neutralino cold dark matter

    Get PDF
    The lightest supersymmetric particle, most likely the neutralino, might account for a large fraction of dark matter in the Universe. We show that the primordial spectrum of density fluctuations in neutralino cold dark matter (CDM) has a sharp cut-off due to two damping mechanisms: collisional damping during the kinetic decoupling of the neutralinos at about 30 MeV (for typical neutralino and sfermion masses) and free streaming after last scattering of neutralinos. The last scattering temperature is lower than the kinetic decoupling temperature by one order of magnitude. The cut-off in the primordial spectrum defines a minimal mass for CDM objects in hierarchical structure formation. For typical neutralino and sfermion masses the first gravitationally bound neutralino clouds have to have masses above 10 7M . PACS numbers: 14.80.Ly, 98.35.Ce, 98.80.-k, 98.80.C
    corecore