613 research outputs found
Rearing of Tephrochlamys flavipes (Zetterstedt, 1838) (Diptera, Heleomyzidae) from fungus in Britain
No abstract available
Which wets TiB2 inoculant particles: Al or Al3Ti?
TiB2 particles are proven effective nucleants of commercial purity aluminium, resulting in smaller grains and hence greater desired mechanical properties; however, there is uncertainty as to the mechanism by which it operates. Here we clarify what happens in the initial stages by computing the total Gibbs energy change associated with four possible nucleation mechanisms, each characterised by the termination of the TiB2(0001) substrate (Ti or B) and the solid that forms on it (Al or Al3Ti). The appropriate solid//solid interfacial energies are derived from Density Functional Theory (DFT) calculations, while the bulk energies are derived from thermodynamic data, supplemented with strain energies calculated from DFT. Solid//liquid interfacial energies are estimated using simple models with parameters based on the literature and DFT calculations. The results suggest that the Ti termination of TiB2 is more stable than the B termination in the melt, and that the direct formation of Al off a Ti-terminated TiB2 substrate is the most favourable mechanism for the nucleation of Al rather than the previously proposed formation of a Al3Ti interlayer. On the B termination of TiB2, Al formation is more stable for thick solid layers, but this is much more uncertain for thin solid layers where it is possible that Al3Ti formation is more stable
Validity and practical utility of accelerometry for the measurement of in-hand physical activity in horses
Background:
Accelerometers are valid, practical and reliable tools for the measurement of habitual physical activity (PA). Quantification of PA in horses is desirable for use in research and clinical settings. The objective of this study was to evaluate a triaxial accelerometer for objective measurement of PA in the horse by assessment of their practical utility and validity.
Horses were recruited to establish both the optimal site of accelerometer attachment and questionnaire designed to explore owner acceptance. Validity and cut-off values were obtained by assessing PA at various gaits. Validation study- 20 horses wore the accelerometer while being filmed for 10Ā min each of rest, walking and trotting and 5 mins of canter work. Practical utility study- five horses wore accelerometers on polls and withers for 18Ā h; compliance and relative data losses were quantified.
Results:
Accelerometry output differed significantly between the four PA levels (Pā<0ā¢001) for both wither and poll placement. For withers placement, ROC analyses found optimal sensitivity and specificity at a cut-off of <47 counts per minute (cpm) for rest (sensitivity 99.5Ā %, specificity 100Ā %), 967ā2424Ā cpm for trotting (sensitivity 96.7Ā %, specificity 100Ā %) and ≥2425Ā cpm for cantering (sensitivity 96.0Ā %, specificity 97.0Ā %). Attachment at the poll resulted in optimal sensitivity and specificity at a cut-off of <707 counts per minute (cpm) for rest (sensitivity 97.5Ā %, specificity 99.6Ā %), 1546ā2609Ā cpm for trotting (sensitivity 90.33Ā %, specificity 79.25Ā %) and ≥2610Ā cpm for cantering (sensitivity 100Ā %, specificity 100Ā %) In terms of practical utility, accelerometry was well tolerated and owner acceptance high.
Conclusion:
Accelerometry data correlated well with varying levels of in-hand equine activity. The use of accelerometers is a valid method for objective measurement of controlled PA in the horse
Classical and quantum calculations of the temperature dependence of the free energy of argon
The free energy is central to statistical mechanics and thermodynamics, and its accurate calculation via. computational modelling is important for a large number of applications, especially when its experimental value is hard to obtain. Several established and general methods for calculating the Helmholtz free energy across different length scales, including continuum, atomistic and quantum mechanical, are compared and analyzed. A computational approach is then proposed to calculate the temperature dependences of internal energy and absolute Helmholtz free energy for solid and liquid phases with the coupling of thermodynamic integration (TI) and harmonic approximation calculations from both classical molecular dynamics (MD) and density functional theory (DFT). We use the Lennard-Jones system as an example (i.e. argon) for the demonstration of the approach. It is observed that the free energy transits smoothly from being describable by the harmonic approximation to including anharmonic effects at a transition temperature around 0.56 Tm; below this temperature, the quantum behavior of atoms is important. At higher temperatures (TāÆ>āÆ0.56 Tm), the TI and harmonic approximation results for the Helmholtz free energy functions become increasingly divergent with the increase of temperature. This work demonstrates that a multiscale approach employing TI, MD, and DFT can provide accurate calculations of the temperature dependence of absolute Helmholtz free energy for both solid and liquid phases
Power dissipation in nanoscale conductors: classical, semi-classical and quantum dynamics
Modelling Joule heating is a difficult problem because of the need to introduce correct correlations between the motions of the ions and the electrons. In this paper we analyse three different models of current induced heating (a purely classical model, a fully quantum model and a hybrid model in which the electrons are treated quantum mechanically and the atoms are treated classically). We find that all three models allow for both heating and cooling processes in the presence of a current, and furthermore the purely classical and purely quantum models show remarkable agreement in the limit of high biases. However, the hybrid model in the Ehrenfest approximation tends to suppress heating. Analysis of the equations of motion reveals that this is a consequence of two things: the electrons are being treated as a continuous fluid and the atoms cannot undergo quantum fluctuations. A means for correcting this is suggested
Block bond-order potential as a convergent moments-based method
The theory of a novel bond-order potential, which is based on the block
Lanczos algorithm, is presented within an orthogonal tight-binding
representation. The block scheme handles automatically the very different
character of sigma and pi bonds by introducing block elements, which produces
rapid convergence of the energies and forces within insulators, semiconductors,
metals, and molecules. The method gives the first convergent results for
vacancies in semiconductors using a moments-based method with a low number of
moments. Our use of the Lanczos basis simplifies the calculations of the band
energy and forces, which allows the application of the method to the molecular
dynamics simulations of large systems. As an illustration of this convergent
O(N) method we apply the block bond-order potential to the large scale
simulation of the deformation of a carbon nanotube.Comment: revtex, 43 pages, 11 figures, submitted to Phys. Rev.
Adulteration and Poor Quality of Ginkgo biloba Supplements
Adulteration of Ginkgo products sold as unregistered supplements within the very large market of Ginkgo products (reputedly Ā£650 million annually) through the post-extraction addition of cheaper (e.g. buckwheat derived) rutin is suspected to allow sub-standard products to appear satisfactory to third parties, e.g. secondary buyers along the value chain or any regulatory authorities. This study was therefore carried out to identify products that did not conform to their label specification and may have been actively adulterated to enable access to the global markets. 500 MHz Bruker NMR spectroscopy instrumentation combined with Topspin version 3.2 and a CAMAG HPTLC system (HPTLC Association for the analysis of Ginkgo biloba leaf) were used to generate NMR spectra (focusing on the 6ā8 ppm region for analysis) and chromatograms, respectively. Out of the 35 samples of Ginkgo biloba analysed, 33 were found to contain elevated levels of rutin and/or quercetin, or low levels of Ginkgo metabolites when compared with the reference samples. Samples with disproportional levels of rutin or quercetin compared with other gingko metabolites are likely to be adulterated, either by accident or intentionally, and those samples with low or non-existent gingko metabolite content may have been produced using poor extraction techniques. Only two of the investigated samples were found to match with the High-Performance Thin-Layer Chromatography (HPTLC) fingerprint of the selected reference material. All others deviated significantly. One product contained a 5-hydroxytryptophan derivative, which is not a natural constituent of Ginkgo biloba. Overall, these examples either suggest a poor extraction technique or deliberate adulteration along the value chain. Investigating the ratio of different flavonoids e.g. quercetin and kaempferol using NMR spectroscopy and HPTLC will provide further evidence as to the degree and kind of adulteration of Gingko supplements. From a consumer perspective the equivalence in identity and overall quality of the products needs to be guaranteed for supplements too and not only for products produced according to a quality standard or pharmacopoeial monograph
Inelastic quantum transport: the self-consistent Born approximation and correlated electron-ion dynamics
A dynamical method for inelastic transport simulations in nanostructures is
compared with a steady-state method based on non-equilibrium Green's functions.
A simplified form of the dynamical method produces, in the steady state in the
weak-coupling limit, effective self-energies analogous to those in the Born
Approximation due to electron-phonon coupling. The two methods are then
compared numerically on a resonant system consisting of a linear trimer weakly
embedded between metal electrodes. This system exhibits enhanced heating at
high biases and long phonon equilibration times. Despite the differences in
their formulation, the static and dynamical methods capture local
current-induced heating and inelastic corrections to the current with good
agreement over a wide range of conditions, except in the limit of very high
vibrational excitations, where differences begin to emerge.Comment: 12 pages, 7 figure
- ā¦