170 research outputs found

    Relativistic nuclear structure effects in quasielastic neutrino scattering

    Get PDF
    Charged-current cross sections are calculated for quasielastic neutrino and antineutrino scattering using a relativistic meson-nucleon model. We examine how nuclear-structure effects, such as relativistic random-phase-approximation (RPA) corrections and momentum-dependent nucleon self-energies, influence the extraction of the axial form factor of the nucleon. RPA corrections are important only at low-momentum transfers. In contrast, the momentum dependence of the relativistic self-energies changes appreciably the value of the axial-mass parameter, MAM_A, extracted from dipole fits to the axial form factor. Using Brookhaven's experimental neutrino spectrum we estimate the sensitivity of MA_A to various relativistic nuclear-structure effects.Comment: 26 pages, revtex, 6 postscript figures (available upon request

    Dirac Hartree-Fock for Finite Nuclei Employing realistic Forces

    Get PDF
    We discuss two different approximation schemes for the self-consistent solution of the {\it relativistic} Brueckner-Hartree-Fock equation for finite nuclei. In the first scheme, the Dirac effects are deduced from corresponding nuclear matter calculations, whereas in the second approach the local-density approximation is used to account for the effects of correlations. The results obtained by the two methods are very similar. Employing a realistic one-boson-exchange potential (Bonn~A), the predictions for energies and radii of 16^{16}O and 40^{40}Ca come out in substantially better agreement with experiment as compared to non-relativistic approaches. As a by-product of our study, it turns out that the Fock exchange-terms, ignored in a previous investigation, are not negligible.Comment:

    Relativistic Ring-Diagram Nuclear Matter Calculations

    Full text link
    A relativistic extension of the particle-particle hole-hole ring-diagram many-body formalism is developed by using the Dirac equation for single-particle motion in the medium. Applying this new formalism, calculations are performed for nuclear matter. The results show that the saturation density is improved and the equation of state becomes softer as compared to corresponding Dirac-Brueckner-Hartree-Fock calculations. Using the Bonn A potential, nuclear matter is predicted to saturate at an energy per nucleon of --15.30 MeV and a density equivalent to a Fermi momentum of 1.38 fm1^{-1}, in excellent agreement with empirical information. The compression modulus is 152 MeV at the saturation point.Comment: 23 pages text (LaTex) and 2 figures (paper, will be faxed upon request), UI-NTH-92-0

    Density Dependent Hadron Field Theory

    Get PDF
    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in--medium NN interactions and field--theoretical meson--nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson--nucleon vertices on the baryon field operators. As a consequence, the Euler--Lagrange equations lead to baryon rearrangement self--energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy--momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean--field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac--Brueckner calculations with the Bonn NN-potentials are used. Results from Hartree calculations for energy spectra, binding energies and charge density distributions of 16O^{16}O, 40,48Ca^{40,48}Ca and 208Pb^{208}Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultanuous improvement of charge radii, charge densities and binding energies. The results indicate the appearance of a new "Coester line" in the nuclear matter equation of state.Comment: 48 LateX pages, 12 Figures, figures and full paper are available as postscript files by anonymous ftp at ftp://theorie.physik.uni-giessen.de/dd

    A Note on D-brane - Anti-D-brane Interactions in Plane Wave Backgrounds

    Full text link
    We study aspects of the interaction between a D-brane and an anti-D-brane in the maximally supersymmetric plane wave background of type IIB superstring theory, which is equipped with a mass parameter mu. An early such study in flat spacetime (mu=0) served to sharpen intuition about D-brane interactions, showing in particular the key role of the ``stringy halo'' that surrounds a D-brane. The halo marks the edge of the region within which tachyon condensation occurs, opening a gateway to new non-trivial vacua of the theory. It seems pertinent to study the fate of the halo for non--zero mu. We focus on the simplest cases of a Lorentzian brane with p=1 and an Euclidean brane with p=-1, the D--instanton. For the Lorentzian brane, we observe that the halo is unaffected by the presence of non--zero mu. This most likely extends to other (Lorentzian) p. For the Euclidean brane, we find that the halo is affected by non-zero mu. As this is related to subtleties in defining the exchange amplitude between Euclidean branes in the open string sector, we expect this to extend to all Euclidean branes in this background.Comment: 14 pages, LaTeX, 2 eps figures. v2: a reference and some clarifying remarks added; v3: Considerably revised version; halo unaffected by plane wave background for Lorentzian branes, but Euclidean branes' halo is modifie

    Penrose Limits of Orbifolds and Orientifolds

    Get PDF
    We study the Penrose limit of various AdS_p X S^q orbifolds. The limiting spaces are waves with parallel rays and singular wave fronts. In particular, we consider the orbifolds AdS_3 X S^3/\Gamma, AdS_5 X S^5/\Gamma and AdS_{4,7} X S^{7,4}/\Gamma where \Gamma acts on the sphere and/or the AdS factor. In the pp-wave limit, the wave fronts are the orbifolds C^2/\Gamma, C^4/\Gamma and R XC^4/\Gamma, respectively. When desingularization is possible, we get asymptotically locally pp-wave backgrounds (ALpp). The Penrose limit of orientifolds are also discussed. In the AdS_5 X RP^5 case, the limiting singularity can be resolved by an Eguchi-Hanson gravitational instanton. The pp-wave limit of D3-branes near singularities in F-theory is also presented. Finally, we give the embedding of D-dimensional pp-waves in flat M^{2,D} space.Comment: 20 pages, references adde

    Supergravity Description of the Large N Noncommutative Dipole Field Theories

    Get PDF
    We consider system of Dp-branes in the presence of a nonzero B field with one leg along brane worldvolume and the other transverse to it. We study the corresponding supergravity solutions and show that the worldvolume theories decouple from gravity for p5p\leq 5. Therefore these solutions provide dual description of large N noncommutative dipole field theories. We shall only consider those systems which preserve 8 supercharges in the branes worldvolume. We analyze the system of M5-branes and NS5-branes in the presence of nonzero C field and RR field with one leg along the transverse direction and the others along the worldvolume of the brane, respectively. This could provide a new deformation of (2,0) and little string field theories. Finally, we study the Wilson loops using the dual gravity descriptions.Comment: 24 pages, Latex fil

    Gravitational Approach to Tachyon Matter

    Get PDF
    We found a gravity solution of p+1 dimensional extended object with SO(p)xSO(9-p) symmetry which has zero pressure and zero dilaton charge. We expect that this object is a residual tachyon dust after tachyon condensation of brane and anti-brane system discussed by Sen, recently. We also discuss the Hawking temperature and some properties of this object.Comment: 14 pages, LaTeX, reference added and typos correcte

    Noncommutative Self-dual Gravity

    Get PDF
    Starting from a self-dual formulation of gravity, we obtain a noncommutative theory of pure Einstein theory in four dimensions. In order to do that, we use Seiberg-Witten map. It is shown that the noncommutative torsion constraint is solved by the vanishing of commutative torsion. Finally, the noncommutative corrections to the action are computed up to second order.Comment: 15+1 pages, LaTeX, no figure

    Strings on type IIB pp-wave backgrounds with interacting massive theories on the worldsheet

    Full text link
    We consider superstring theories on pp-wave backgrounds which result in an integrable N=(2,2){\cal N}=(2,2) supersymmetric Landau-Ginzburg theory on the worldsheet. We obtain exact eigenvalues of the light-cone gauge superstring hamiltonian in the massive and interacting world-sheet theory with superpotential Z3ZZ^3-Z. We find the modes of the supergravity part of the string spectrum, and their space-time interpretation. Because the system is effectively at strong coupling on the worldsheet, these modes are not in one-to-one correspondence with the usual type IIB supergravity modes in the p0p_{-} \to 0 limit. However, the above correspondence holds in the α0\alpha'\to 0 limit.Comment: 20 pages, 1 figure; minor changes, comments adde
    corecore