5,612 research outputs found

    Biochemical Aspects of Genetics

    Get PDF
    It would be impossible, in the time and space available, to cover all of the noteworthy advances that have been made in biochemical genetics during the past year. We have, therefore, selected for review a number of topics that are especially active at the moment and that promise to yield important new results in the near future. At the same time, we have tried to avoid duplicating the material of other chapters in this volume which are germane to biochemical genetics. We refer, in particular, to the chapters on Metabolism of Nucleic Acids (Macromolecular DNA and RNA); Nucleic Acids and Protein Biosynthesis; The Basic Proteins of Cell Nuclei; and Chemistry of Differentiation in Lower Organisms. The reader should consult these reviews, as well as the present one, for a fuller view of current activities in this field

    Unitarity, quasi-normal modes and the AdS_3/CFT_2 correspondence

    Full text link
    In general, black-hole perturbations are governed by a discrete spectrum of complex eigen-frequencies (quasi-normal modes). This signals the breakdown of unitarity. In asymptotically AdS spaces, this is puzzling because the corresponding CFT is unitary. To address this issue in three dimensions, we replace the BTZ black hole by a wormhole, following a suggestion by Solodukhin [hep-th/0406130]. We solve the wave equation for a massive scalar field and find an equation for the poles of the propagator. This equation yields a rich spectrum of {\em real} eigen-frequencies. We show that the throat of the wormhole is o(e−1/G)o(e^{-1/G}), where GG is Newton's constant. Thus, the quantum effects which might produce the wormhole are non-perturbative.Comment: 9 page

    Poincare recurrences of Schwarzschild black holes

    Full text link
    We discuss massive scalar perturbations of a Schwarzschild black hole. We argue that quantum effects alter the effective potential near the horizon resulting in Poincare recurrences in Green functions. Results at the semi-classical level are independent of the details of the modification of the potential provided its minimum near the horizon is inversely proportional to the square of the Poincare time. This modification may be viewed as a change in the near-horizon geometry. We consider explicitly the examples of a brick wall, a smooth cutoff and a wormhole-like modification showing that they all lead to the same results at leading order.Comment: 15 page

    Nonequilibrium Detailed Fluctuation Theorem for Repeated Discrete Feedback

    Full text link
    We extend the framework of forward and reverse processes commonly utilized in the derivation and analysis of the nonequilibrium work relations to thermodynamic processes with repeated discrete feedback. Within this framework, we derive a generalization of the detailed fluctuation theorem, which is modified by the addition of a term that quantifies the change in uncertainty about the microscopic state of the system upon making measurements of physical observables during feedback. As an application, we extend two nonequilibrium work relations: the nonequilibrium work fluctuation theorem and the relative-entropy work relation.Comment: 7 pages, 3 figure

    Viking on Mars: The carbon assimilation experiments

    Get PDF
    A fixation of atmospheric carbon, presumably into organic form, occurs in Martian surface material under conditions approximating the actual Martian ones. The reaction showed the following characteristics: The amount of carbon fixed is small by terrestrial standards; highest yields were observed in the light, but some dark activity was also detected; and heating the surface material to 90°C for nearly 2 hours had no effect on the reaction, but heating to 175°C for 3 hours reduced it by nearly 90%. New data from Mars do not support an earlier suggestion that the reaction is inhibited by traces of water. There is evidence of considerable heterogeneity among different samples, but different aliquots from the same sample are remarkably uniform in their carbon-fixing capacity. In view of its thermostability it is unlikely that the reaction is biological

    Comments on Black Holes in Matrix Theory

    Get PDF
    The recent suggestion that the entropy of Schwarzschild black holes can be computed in matrix theory using near-extremal D-brane thermodynamics is examined. It is found that the regime in which this approach is valid actually describes black strings stretched across the longitudinal direction, near the transition where black strings become unstable to the formation of black holes. It is argued that the appropriate dynamics on the other (black hole) side of the transition is that of the zero modes of the corresponding super Yang-Mills theory. A suggestive mean field theory argument is given for the entropy of black holes in all dimensions. Consequences of the analysis for matrix theory and the holographic principle are discussed.Comment: 15 pages, harvmac, minor errors correcte

    Designing optimal discrete-feedback thermodynamic engines

    Full text link
    Feedback can be utilized to convert information into useful work, making it an effective tool for increasing the performance of thermodynamic engines. Using feedback reversibility as a guiding principle, we devise a method for designing optimal feedback protocols for thermodynamic engines that extract all the information gained during feedback as work. Our method is based on the observation that in a feedback-reversible process the measurement and the time-reversal of the ensuing protocol both prepare the system in the same probabilistic state. We illustrate the utility of our method with two examples of the multi-particle Szilard engine.Comment: 15 pages, 5 figures, submitted to New J. Phy

    Neutrino Trapping in a Supernova and Ion Screening

    Get PDF
    Neutrino-nucleus elastic scattering is reduced in dense matter because of correlations between ions. The static structure factor for a plasma of electrons and ions is calculated from Monte Carlo simulations and parameterized with a least squares fit. Our results imply a large increase in the neutrino mean free path. This strongly limits the trapping of neutrinos in a supernova by coherent neutral current interactions.Comment: 9 pages, 1 postscript figure using epsf.st
    • 

    corecore