1,940 research outputs found

    SL(2,R)SL(2,R) symmetry and quasi-normal modes in the BTZ black hole

    Full text link
    With the help of two new intrinsic tensor fields associated with the SL(2,R)SL(2,R) quadratic Casimir of Killing fields, we uncover the SL(2,R)SL(2,R) symmetry satisfied by the solutions to the equations of motion for various fields in the BTZ black hole in a uniform way by performing tensor and spinor analysis without resorting to any specific coordinate system. Then with the standard algebraic method developed recently, we determine the quasi-normal modes for various fields in the BTZ black hole. As a result, the quasi-normal modes are given by the infinite tower of descendants of the chiral highest weight mode, which is in good agreement with the previous analytic result obtained by exactly solving equations of motion instead.Comment: JHEP style, 1+13 pages, version to appear in JHE

    A scalar field instability of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time

    Full text link
    We study the stability of static as well as of rotating and charged black holes in (4+1)-dimensional Anti-de Sitter space-time which possess spherical horizon topology. We observe a non-linear instability related to the condensation of a charged, tachyonic scalar field and construct "hairy" black hole solutions of the full system of coupled Einstein, Maxwell and scalar field equations. We observe that the limiting solution for small horizon radius is either a hairy soliton solution or a singular solution that is not a regular extremal solution. Within the context of the gauge/gravity duality the condensation of the scalar field describes a holographic conductor/superconductor phase transition on the surface of a sphere.Comment: 16 pages including 8 figures, v2: discussion on soliton solutions extended; v3: matches version accepted for publication in JHE

    Entanglement Entropy and Wilson Loop in St\"{u}ckelberg Holographic Insulator/Superconductor Model

    Full text link
    We study the behaviors of entanglement entropy and vacuum expectation value of Wilson loop in the St\"{u}ckelberg holographic insulator/superconductor model. This model has rich phase structures depending on model parameters. Both the entanglement entropy for a strip geometry and the heavy quark potential from the Wilson loop show that there exists a "confinement/deconfinement" phase transition. In addition, we find that the non-monotonic behavior of the entanglement entropy with respect to chemical potential is universal in this model. The pseudo potential from the spatial Wilson loop also has a similar non-monotonic behavior. It turns out that the entanglement entropy and Wilson loop are good probes to study the properties of the holographic superconductor phase transition.Comment: 23 pages,12 figures. v2: typos corrected, accepted in JHE

    Holographic Symmetry-Breaking Phases in AdS3_3/CFT2_2

    Full text link
    In this note we study the symmetry-breaking phases of 3D gravity coupled to matter. In particular, we consider black holes with scalar hair as a model of symmetry-breaking phases of a strongly coupled 1+1 dimensional CFT. In the case of a discrete symmetry, we show that these theories admit metastable phases of broken symmetry and study the thermodynamics of these phases. We also demonstrate that the 3D Einstein-Maxwell theory shows continuous symmetry breaking at low temperature. The apparent contradiction with the Coleman-Mermin-Wagner theorem is discussed.Comment: 15 pages, 7 figur

    Physics of Neutron Star Kicks

    Get PDF
    It is no longer necessary to `sell' the idea of pulsar kicks, the notion that neutron stars receive a large velocity (a few hundred to a thousand km s1^{-1}) at birth. However, the origin of the kicks remains mysterious. We review the physics of different kick mechanisms, including hydrodynamically driven, neutrino and magnetically driven kicks.Comment: 8 pages including 1 figure. To be published in "Stellar Astrophysics" (Pacific Rim Conference Proceedings), (Kluwer Pub.

    Holographic Superconductor/Insulator Transition at Zero Temperature

    Get PDF
    We analyze the five-dimensional AdS gravity coupled to a gauge field and a charged scalar field. Under a Scherk-Schwarz compactification, we show that the system undergoes a superconductor/insulator transition at zero temperature in 2+1 dimensions as we change the chemical potential. By taking into account a confinement/deconfinement transition, the phase diagram turns out to have a rich structure. We will observe that it has a similarity with the RVB (resonating valence bond) approach to high-Tc superconductors via an emergent gauge symmetry.Comment: 25 pages, 23 figures; A new subsection on a concrete string theory embedding added, references added (v2); Typos corrected, references added (v3

    Charged Dilatonic AdS Black Branes in Arbitrary Dimensions

    Full text link
    We study electromagnetically charged dilatonic black brane solutions in arbitrary dimensions with flat transverse spaces, that are asymptotically AdS. This class of solutions includes spacetimes which possess a bulk region where the metric is approximately invariant under Lifshitz scalings. Given fixed asymptotic boundary conditions, we analyze how the behavior of the bulk up to the horizon varies with the charges and derive the extremality conditions for these spacetimes.Comment: References update

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    Analytic study of properties of holographic p-wave superconductors

    Full text link
    In this paper, we analytically investigate the properties of p-wave holographic superconductors in AdS4AdS_{4}-Schwarzschild background by two approaches, one based on the Sturm-Liouville eigenvalue problem and the other based on the matching of the solutions to the field equations near the horizon and near the asymptotic AdSAdS region. The relation between the critical temperature and the charge density has been obtained and the dependence of the expectation value of the condensation operator on the temperature has been found. Our results are in very good agreement with the existing numerical results. The critical exponent of the condensation also comes out to be 1/2 which is the universal value in the mean field theory.Comment: Latex, To appear in JHE

    Higher spin quasinormal modes and one-loop determinants in the BTZ black hole

    Full text link
    We solve the wave equations of arbitrary integer spin fields in the BTZ black hole background and obtain exact expressions for their quasinormal modes. We show that these quasinormal modes precisely agree with the location of the poles of the corresponding two point function in the dual conformal field theory as predicted by the AdS/CFT correspondence. We then use these quasinormal modes to construct the one-loop determinant of the higher spin field in the thermal BTZ background. This is shown to agree with that obtained from the corresponding heat kernel constructed recently by group theoretic methods.Comment: 47 page
    corecore