13,532 research outputs found
Recommended from our members
Variable domain transformation for linear PAC analysis of mixed-signal systems
This paper describes a method to perform linear AC analysis on mixed-signal systems which appear strongly nonlinear in the voltage domain but are linear in other variable domains. Common circuits like phase/delay-locked loops and duty-cycle correctors fall into this category, since they are designed to be linear with respect to phases, delays, and duty-cycles of the input and output clocks, respectively. The method uses variable domain translators to change the variables to which the AC perturbation is applied and from which the AC response is measured. By utilizing the efficient periodic AC (PAC) analysis available in commercial RF simulators, the circuit’s linear transfer function in the desired variable domain can be characterized without relying on extensive transient simulations. Furthermore, the variable domain translators enable the circuits to be macromodeled as weakly-nonlinear systems in the chosen domain and then converted to voltage-domain models, instead of being modeled as strongly-nonlinear systems directly
Recommended from our members
Fast, non-monte-carlo estimation of transient performance variation due to device mismatch
This paper describes an efficient way of simulating the effects of device random mismatch on circuit transient characteristics, such as variations in delay or in frequency. The proposed method models DC random offsets as equivalent AC pseudo-noises and leverages the fast, linear periodically time-varying (LPTV) noise analysis available from RF circuit simulators. Therefore, the method can be considered as an extension to DC match analysis and offers a large speed-up compared to the traditional Monte-Carlo analysis. Although the assumed linear perturbation model is valid only for small variations, it enables easy ways to estimate correlations among variations and identify the most sensitive design parameters to mismatch, all at no additional simulation cost. Three benchmarks measuring the variations in the input offset voltage of a clocked comparator, the delay of a logic path, and the frequency of an oscillator demonstrate the speed improvement of about 100-1000x compared to a 1000-point Monte-Carlo method
Dispersion corrections to parity violating electron scattering
We consider the dispersion correction to elastic parity violating
electron-proton scattering due to \gammaZ exchange. In a recent publication,
this correction was reported to be substantially larger than the previous
estimates. In this paper, we study the dispersion correction in greater detail.
We confirm the size of the disperion correction to be 6% for the QWEAK
experiment designed to measure the proton weak charge. We enumerate parameters
that have to be constrained to better than relative 30% in order to keep the
theoretical uncertainty for QWEAK under control.Comment: 6 pages, 3 figures, 2 tables; To be published in the proceedings of
the VIII Latin American Symposium on Nuclear Physics and Applications,
December 15-19, 2009, Santiago, Chiil
Quenching and Tomography from RHIC to LHC
We compare fully perturbative and fully nonperturbative pictures of high-pT
energy loss calculations to the first results from LHC. While over-suppressed
compared to published ALICE data, parameter-free pQCD predictions based on the
WHDG energy loss model constrained to RHIC data simultaneously describe well
the preliminary CMS hadron suppression, ATLAS charged hadron v2, and ALICE D
meson suppression; we also provide for future reference WHDG predictions for B
meson RAA. However, energy loss calculations based on AdS/CFT also
qualitatively describe well the RHIC pion and non-photonic electron suppression
and LHC charged hadron suppression. We propose the double ratio of charm to
bottom quark RAA will qualitatively distinguish between these two energy loss
pictures.Comment: 4 pages, 3 figures. Proceedings for Quark Matter 201
Thermoregulation in rats: Effects of varying duration of hypergravic fields
The effects of hypergravitational fields on the thermoregulatory system of the rat are examined. The question underlying the investigation was whether the response of the rat to the one hour cold exposure depends only upon the amplitude of the hypergravic field during the period of cold exposure or whether the response is also dependent on the amplitude and duration of the hypergravic field prior to cold exposure. One hour of cold exposure applied over the last hour of either a 1, 4, 7, 13, 19, 25, or 37 hr period of 3G evoked a decrease in core temperature (T sub c) of about 3 C. However, when rats were subjected concurrently to cold and acceleration following 8 days at 3G, they exhibited a smaller fall in T sub c, suggesting partial recovery of the acceleration induced impairment of temperature regulation. In another series of experiments, the gravitational field profile was changed in amplitude in 3 different ways. Despite the different gravitational field profiles used prior to cold, the magnitude of the fall in T sub c over the 1 hr period of cold exposure was the same in all cases. These results suggest that the thermoregulatory impairment has a rapid onset, is a manifestation of an ongoing effect of hypergravity, and is not dependent upon the prior G profile
Effect of altered gravity on temperature regulation in mammals: Investigation of gravity effect on temperature regulation in mammals
Male, Long-Evans hooded rats were instrumented for monitoring core and hypothalamic temperatures as well as shivering and nonshivering thermogenesis in response to decreased ambient temperature in order to characterize the nature of the neural controller of temperature in rats at 1G and evaluate chronic implantation techniques for the monitoring of appropriate parameters at hypergravic fields. The thermoregulatory responses of cold-exposed rats at 2G were compared to those at 1G. A computer model was developed to simulate the thermoregulatory system in the rat. Observations at 1 and 2G were extended to acceleration fields of 1.5, 3.0 and 4.0G and the computer model was modified for application to altered gravity conditions. Changes in the acceleration field resulted in inadequate heat generation rather than increased heat loss. Acceleration appears to impair the ability of the neurocontroller to appropriately integrate input signals for body temperature maintenance
- …