3,113 research outputs found

    3D Particle Tracking Velocimetry Method: Advances and Error Analysis

    Get PDF
    A full three-dimensional particle tracking system was developed and tested. By using three separate CCDs placed at the vertices of an equilateral triangle, the threedimensional location of particles can be determined. Particle locations measured at two different times can then be used to create a three-component, three-dimensional velocity field. Key developments are: the ability to accurately process overlapping particle images, offset CCDs to significantly improve effective resolution, allowance for dim particle images, and a hybrid particle tracking technique ideal for three-dimensional flows when only two sets of images exist. An in-depth theoretical error analysis was performed which gives the important sources of error and their effect on the overall system. This error analysis was verified through a series of experiments, which utilized a test target with 100 small dots per square inch. For displacements of 2.54mm the mean errors were less than 2% and the 90% confidence limits were less than 5.2 μm in the plane perpendicular to the camera axis, and 66 μm in the direction of the camera axis. The system was used for flow measurements around a delta wing at an angle of attack. These measurements show the successful implementation of the system for three-dimensional flow velocimetry

    On imploding cylindrical and spherical shock waves in a perfect gas

    Get PDF
    The problem of a cylindrically or spherically imploding and reflecting shock wave in a flow initially at rest is studied without the use of the strong-shock approximation. Dimensional arguments are first used to show that this flow admits a general solution where an infinitesimally weak shock from infinity strengthens as it converges towards the origin. For a perfect-gas equation of state, this solution depends only on the dimensionality of the flow and on the ratio of specific heats. The Guderley power-law result can then be interpreted as the leading-order, strong-shock approximation, valid near the origin at the implosion centre. We improve the Guderley solution by adding two further terms in the series expansion solution for both the incoming and the reflected shock waves. A series expansion, valid where the shock is still weak and very far from the origin, is also constructed. With an appropriate change of variables and using the exact shock-jump conditions, a numerical, characteristics-based solution is obtained describing the general shock motion from almost infinity to very close to the reflection point. Comparisons are made between the series expansions, the characteristics solution, and the results obtained using an Euler solver. These show that the addition of two terms to the Guderley solution significantly extends the range of validity of the strong-shock series expansion

    On the unconstrained expansion of a spherical plasma cloud turning collisionless : case of a cloud generated by a nanometer dust grain impact on an uncharged target in space

    Get PDF
    Nano and micro meter sized dust particles travelling through the heliosphere at several hundreds of km/s have been repeatedly detected by interplanetary spacecraft. When such fast moving dust particles hit a solid target in space, an expanding plasma cloud is formed through the vaporisation and ionisation of the dust particles itself and part of the target material at and near the impact point. Immediately after the impact the small and dense cloud is dominated by collisions and the expansion can be described by fluid equations. However, once the cloud has reached micro-m dimensions, the plasma may turn collisionless and a kinetic description is required to describe the subsequent expansion. In this paper we explore the late and possibly collisionless spherically symmetric unconstrained expansion of a single ionized ion-electron plasma using N-body simulations. Given the strong uncertainties concerning the early hydrodynamic expansion, we assume that at the time of the transition to the collisionless regime the cloud density and temperature are spatially uniform. We do also neglect the role of the ambient plasma. This is a reasonable assumption as long as the cloud density is substantially higher than the ambient plasma density. In the case of clouds generated by fast interplanetary dust grains hitting a solid target some 10^7 electrons and ions are liberated and the in vacuum approximation is acceptable up to meter order cloud dimensions. ..

    Nkx2.1 regulates the generation of telencephalic astrocytes during embryonic development.

    Get PDF
    The homeodomain transcription factor Nkx2.1 (NK2 homeobox 1) controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here we show that Nkx2.1 also regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Moreover we identify the different mechanisms by which Nkx2.1 controls the telencephalic astrogliogenesis. In Nkx2.1 knockout (Nkx2.1 <sup>-/-</sup> ) mice a drastic loss of astrocytes is observed that is not related to cell death. Further, in vivo analysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of the ventral neural stem cells that generate early astrocytes. Also, in vitro neurosphere assays showed reduced generation of astroglia upon loss of Nkx2.1, which could be due to decreased precursor proliferation and possibly defects in glial specification/differentiation. Chromatin immunoprecipitation analysis and in vitro co-transfection studies with an Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of glial fibrillary acidic protein (GFAP), primarily expressed in astrocytes, to regulate its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating proliferation of the contributing Nkx2.1-positive precursors

    3D virtual histology of murine kidneys-high resolution visualization of pathological alterations by micro computed tomography

    Full text link
    The increasing number of patients with end stage chronic kidney disease not only calls for novel therapeutics but also for pioneering research using convincing preclinical disease models and innovative analytical techniques. The aim of this study was to introduce a virtual histology approach using micro computed tomography (mu CT) for the entire murine kidney in order to close the gap between single slice planar histology and a 3D high resolution dataset. An ex vivo staining protocol based on phosphotungstic acid diffusion was adapted to enhance renal soft tissue x-ray attenuation. Subsequent CT scans allowed (i) the detection of the renal cortex, medulla and pelvis in greater detail, (ii) the analysis of morphological alterations, (iii) the quantification of the volume as well as the radio-opacity of these portions and (iv) the quantification of renal fibrotic remodeling based on altered radio-opacity using the unilateral ureteral obstruction model. Thus, virtual histology based on PTA contrast enhanced CT will in future help to refine the outcome of preclinical research on kidney associated murine disease models

    Nkx2.1 regulates the proliferation and cell fate of telencephalic astrocytes during embryonic development

    Get PDF
    AbstractThe homeodomain transcription factor Nkx2.1 controls cell differentiation of telencephalic GABAergic interneurons and oligodendrocytes. Here, we show that Nkx2.1 additionally regulates astrogliogenesis of the telencephalon from embryonic day (E) 14.5 to E16.5. Our work aims to identify the different mechanisms by which Nkx2.1 controls telencephalic astrogliogenesis. InNkx2.1-/-, a drastic loss of astrocytes is observed which is not related to cell death.In vivoanalysis using BrdU incorporation reveals that Nkx2.1 affects the proliferation of ventral neural stem cells that generate early astrocytes.In vitroneurosphere assays show that Nkx2.1 additionally affects the differentiation step of Nkx2.1-derived astrocytes. Chromatin immunoprecipitation andin vitroco-transfection studies of a Nkx2.1-expressing plasmid indicate that Nkx2.1 binds to the promoter of astroglial differentiation gene GFAP, and regulates its expression. Hence, Nkx2.1 controls astroglial production spatiotemporally in embryos by regulating stem cell division and specification of the contributing Nkx2.1+precursors.</jats:p

    Nkx2.1-derived astrocytes and neurons together with Slit2 are indispensable for anterior commissure formation.

    Get PDF
    Guidepost cells present at and surrounding the midline provide guidance cues that orient the growing axons through commissures. Here we show that the transcription factor Nkx2.1 known to control the specification of GABAergic interneurons also regulates the differentiation of astroglia and polydendrocytes within the mouse anterior commissure (AC). Nkx2.1-positive glia were found to originate from three germinal regions of the ventral telencephalon. Nkx2.1-derived glia were observed in and around the AC region by E14.5. Thereafter, a selective cell ablation strategy showed a synergistic role of Nkx2.1-derived cells, both GABAergic interneurons and astroglia, towards the proper formation of the AC. Finally, our results reveal that the Nkx2.1-regulated cells mediate AC axon guidance through the expression of the repellent cue, Slit2. These results bring forth interesting insights about the spatial and temporal origin of midline telencephalic glia, and highlight the importance of neurons and astroglia towards the formation of midline commissures

    Coherent control using adaptive learning algorithms

    Full text link
    We have constructed an automated learning apparatus to control quantum systems. By directing intense shaped ultrafast laser pulses into a variety of samples and using a measurement of the system as a feedback signal, we are able to reshape the laser pulses to direct the system into a desired state. The feedback signal is the input to an adaptive learning algorithm. This algorithm programs a computer-controlled, acousto-optic modulator pulse shaper. The learning algorithm generates new shaped laser pulses based on the success of previous pulses in achieving a predetermined goal.Comment: 19 pages (including 14 figures), REVTeX 3.1, updated conten
    corecore