6 research outputs found

    Main Properties of the THERAFLEX MB-Plasma System for Pathogen Reduction

    No full text
    Methylene blue (MB) treated plasma has been in clinical use for 18 years. The current THERAFLEX MB-Plasma has a number of improved features compared with the original Springe methodology. This overview embodies: the biochemical characteristics of MB, the mechanism of the technology, toxicology, pathogen reduction capacity, current position in clinical setting and status within Europe. The THERAFLEX MB (TMB) procedure is a robust, well standardised system lending itself to transfusion setting and meets the current guidelines. The pathogen kill power of the TMB system, like the other available technologies, is not limitless, probably in order of 6 log for most enveloped viruses and considerably less for non-enveloped ones. It does not induce either new antigen or grossly reducing the function and life span of active principle in fresh frozen plasma (FFP). The removal of the residual MB at the end of the process has the beneficial effect of reducing potential toxic impacts. Clinical haemovigilance data, so far, indicate that cell-free MB plasma is effective in all therapeutic setting requiring FFP, besides inconsistent thrombotic thrombocytopenia purpura data, without serious side-effects or toxicity. The current system is in continuous improvement e.g. regarding virus reduction range, illumination device, software used, and process integration in the blood bank setting

    Pathogen Reduction Technology Treatment of Platelets, Plasma and Whole Blood Using Riboflavin and UV Light

    No full text
    Bacterial contamination and emerging infections combined with increased international travel pose a great risk to the safety of the blood supply. Tests to detect the presence of infection in a donor have a ‘window period’ during which infections cannot be detected but the donor may be infectious. Agents and their transmission routes need to be recognized before specific tests can be developed. Pathogen reduction of blood components represents a means to address these concerns and is a proactive approach for the prevention of transfusion-transmitted diseases. The expectation of a pathogen reduction system is that it achieves high enough levels of pathogen reduction to reduce or prevent the likelihood of disease transmission while preserving adequate cell and protein quality. In addition the system needs to be non-toxic, non-mutagenic and should be simple to use. The Mirasol¼ Pathogen Reduction Technology (PRT) System for Platelets and Plasma uses riboflavin (vitamin B2) plus UV light to induce damage in nucleic acid-containing agents. The system has been shown to be effective against clinically relevant pathogens and inactivates leukocytes without significantly compromising the efficacy of the product or resulting in product loss. Riboflavin is a naturally occurring vitamin with a well-known and well-characterized safety profile. The same methodology is currently under development for the treatment of whole blood, making pathogen reduction of all blood products using one system achievable. This review gives an overview of the Mirasol PRT System, summarizing the mechanism of action, toxicology profile, pathogen reduction performance and clinical efficacy of the process
    corecore