3 research outputs found

    Creatine, guanidinoacetate and homoarginine in statin-induced myopathy

    No full text
    Our study evaluated the effect of creatine and homoarginine in AGAT- and GAMT-deficient mice after simvastatin exposure. Balestrino and Adriano suggest that guanidinoacetate might explain the difference between AGAT- and GAMT-deficient mice in simvastatin-induced myopathy. We agree with Balestrino and Adriano that our data shows that (1) creatine possesses a protective potential to ameliorate statin-induced myopathy in humans and mice and (2) homoarginine did not reveal a beneficial effect in statin-induced myopathy. Third, we agree that guanidinoacetate can be phosphorylated and partially compensate for phosphocreatine. In our study, simvastatin-induced damage showed a trend to be less pronounced in GAMT-deficient mice compared with wildtype mice. Therefore, (phospo) guanidinoacetate cannot completely explain the milder phenotype of GAMT-deficient mice, but we agree that it might contribute to ameliorate statin-induced myopathy in GAMT-deficient mice compared with AGAT-deficient mice. Finally, we agree with Balestino and Adriano that AGAT metabolites should further be evaluated as potential treatments in statin-induced myopathy

    Homoarginine supplementation improves blood glucose in diet-induced obese mice

    No full text
    l-Homoarginine (hArg) is an endogenous amino acid which has emerged as a novel biomarker for stroke and cardiovascular disease. Low circulating hArg levels are associated with increased mortality and vascular events, whereas recent data have revealed positive correlations between circulating hArg and metabolic vascular risk factors like obesity or blood glucose levels. However, it is unclear whether hArg levels are causally linked to metabolic parameters. Therefore, the aim of our study was to investigate whether hArg directly influences body weight, blood glucose, glucose tolerance or insulin sensitivity. Here, we show that hArg supplementation (14 and 28 mg/mL orally per drinking water) ameliorates blood glucose levels in mice on high-fat diet (HFD) by a reduction of 7.3 +/- A 3.7 or 13.4 +/- A 3.8 %, respectively. Fasting insulin concentrations were slightly, yet significantly affected (63.8 +/- A 11.3 or 162.1 +/- A 39.5 % of control animals, respectively), whereas body weight and glucose tolerance were unaltered. The substantial augmentation of hArg plasma concentrations in supplemented animals (327.5 +/- A 40.4 or 627.5 +/- A 60.3 % of control animals, respectively) diminished profoundly after the animals became obese (129.9 +/- A 16.6 % in control animals after HFD vs. 140.1 +/- A 8.5 or 206.3 +/- A 13.6 %, respectively). This hArg-lowering effect may contribute to the discrepancy between the inverse correlation of plasma hArg levels with stroke and cardiovascular outcome, on the one hand, and the direct correlation with cardiovascular risk factors like obesity and blood glucose, on the other hand, that has been observed in human studies. Our results suggest that the glucose-lowering effects of hArg may reflect a compensatory mechanism of blood glucose reduction by hArg upregulation in obese individuals, without directly influencing body weight or glucose tolerance

    Muscle phenotype of AGAT- and GAMT-deficient mice after simvastatin exposure

    No full text
    Statin-induced myopathy affects more than 10 million people worldwide. But discontinuation of statin treatment increases mortality and cardiovascular events. Recently, l-arginine:glycine amidinotransferase (AGAT) gene was associated with statin-induced myopathy in two populations, but the causal link is still unclear. AGAT is responsible for the synthesis of l-homoarginine (hArg) and guanidinoacetate (GAA). GAA is further methylated to creatine (Cr) by guanidinoacetate methyltransferase (GAMT). In cerebrovascular patients treated with statin, lower hArg and GAA plasma concentrations were found than in non-statin patients, indicating suppressed AGAT expression and/or activity (n = 272, P = 0.033 and P = 0.039, respectively). This observation suggests that statin-induced myopathy may be associated with AGAT expression and/or activity in muscle cells. To address this, we studied simvastatin-induced myopathy in AGAT- and GAMT-deficient mice. We found that simvastatin induced muscle damage and reduced AGAT expression in wildtype mice (myocyte diameter: 34.1 +/- 1.3 mu m vs 21.5 +/- 1.3 mu m, P = 0.026; AGAT expression: 1.0 +/- 0.3 vs 0.48 +/- 0.05, P = 0.017). Increasing AGAT expression levels of transgenic mouse models resulted in rising plasma levels of hArg and GAA (P < 0.01 and P < 0.001, respectively). Simvastatin-induced motor impairment was exacerbated in AGAT-deficient mice compared with AGAT-overexpressing GAMT(-/-) mice and therefore revealed an effect independent of Cr. But Cr supplementation itself improved muscle strength independent of AGAT expression (normalized grip strength: 55.8 +/- 2.9% vs 72.5% +/- 3.0%, P < 0.01). Homoarginine supplementation did not affect statin-induced myopathy in AGAT-deficient mice. Our results from clinical and animal studies suggest that AGAT expression/activity and its product Cr influence statin-induced myopathy independent of each other. The interplay between simvastatin treatment, AGAT expression and activity, and Cr seems to be complex. Further clinical pharmacological studies are needed to elucidate the underlying mechanism(s) and to evaluate whether supplementation with Cr, or possibly GAA, in patients under statin medication may reduce the risk of muscular side effects
    corecore