378 research outputs found
A Second Giant Planet in 3:2 Mean-Motion Resonance in the HD 204313 System
We present 8 years of high-precision radial velocity (RV) data for HD 204313
from the 2.7 m Harlan J. Smith Telescope at McDonald Observatory. The star is
known to have a giant planet (M sin i = 3.5 M_J) on a ~1900-day orbit, and a
Neptune-mass planet at 0.2 AU. Using our own data in combination with the
published CORALIE RVs of Segransan et al. (2010), we discover an outer Jovian
(M sin i = 1.6 M_J) planet with P ~ 2800 days. Our orbital fit suggests the
planets are in a 3:2 mean motion resonance, which would potentially affect
their stability. We perform a detailed stability analysis, and verify the
planets must be in resonance.Comment: Accepted for publication in Ap
Models of the ICM with Heating and Cooling: Explaining the Global and Structural X-ray Properties of Clusters
(Abridged) Theoretical models that include only gravitationally-driven
processes fail to match the observed mean X-ray properties of clusters. As a
result, there has recently been increased interest in models in which either
radiative cooling or entropy injection play a central role in mediating the
properties of the intracluster medium. Both sets of models give reasonable fits
to the mean properties of clusters, but cooling only models result in fractions
of cold baryons in excess of observationally established limits and the
simplest entropy injection models do not treat the "cooling core" structure
present in many clusters and cannot account for entropy profiles revealed by
recent X-ray observations. We consider models that marry radiative cooling with
entropy injection, and confront model predictions for the global and structural
properties of massive clusters with the latest X-ray data. The models
successfully and simultaneously reproduce the observed L-T and L-M relations,
yield detailed entropy, surface brightness, and temperature profiles in
excellent agreement with observations, and predict a cooled gas fraction that
is consistent with observational constraints. The model also provides a
possible explanation for the significant intrinsic scatter present in the L-T
and L-M relations and provides a natural way of distinguishing between clusters
classically identified as "cooling flow" clusters and dynamically relaxed
"non-cooling flow" clusters. The former correspond to systems that had only
mild levels (< 300 keV cm^2) of entropy injection, while the latter are
identified as systems that had much higher entropy injection. This is borne out
by the entropy profiles derived from Chandra and XMM-Newton.Comment: 20 pages, 15 figures, accepted for publication in the Astrophysical
Journa
Donepezil Effects on Mood in Patients with Schizophrenia and Schizoaffective Disorder
Donepezil, 5 mg/d for 6 wk then 10 mg/d for 6 wk, and placebo daily for 12 wk in a double-blind cross-over paradigm, was added to the therapeutic regimen of 13 patients with schizophrenia or schizoaffective disorders, clinically stable on atypical antipsychotic medications. Patients had varying degrees of depressive symptoms, ranging from no depression to clinically significant depression. There was no worsening or induction of depression in individual patients or the group as a whole. In addition there was a statistically significant antidepressant effect in the group as a whole during the donepezil condition and a clinically significant antidepressant effect in the patients with clinically significant depressive symptoms, although there were not enough depressed patients in the group to conclude that donepezil may have antidepressant effects. Thus, in this study, donepezil did not induce or worsen depressive symptoms in schizophrenic and schizoaffective disorder patients
Phosphorylation of GRK1 and GRK7 by cAMP-dependent Protein Kinase Attenuates Their Enzymatic Activities
Phosphorylation of G protein-coupled receptors is a critical step in the rapid termination of G protein signaling. In rod cells of the vertebrate retina, phosphorylation of rhodopsin is mediated by GRK1. In cone cells, either GRK1, GRK7, or both, depending on the species, are speculated to initiate signal termination by phosphorylating the cone opsins. To compare the biochemical properties of GRK1 and GRK7, we measured the K(m) and V(max) of these kinases for ATP and rhodopsin, a model substrate. The results demonstrated that these kinases share similar kinetic properties. We also determined that cAMP-dependent protein kinase (PKA) phosphorylates GRK1 at Ser(21) and GRK7 at Ser(23) and Ser(36) in vitro. These sites are also phosphorylated when FLAG-tagged GRK1 and GRK7 are expressed in HEK-293 cells treated with forskolin to stimulate the endogenous production of cAMP and activation of PKA. Rod outer segments isolated from bovine retina phosphorylated the FLAG-tagged GRKs in the presence of dibutyryl-cAMP, suggesting that GRK1 and GRK7 are physiologically relevant substrates. Although both GRKs also contain putative phosphorylation sites for PKC and Ca(2+)/calmodulin-dependent protein kinase II, neither kinase phosphorylated GRK1 or GRK7. Phosphorylation of GRK1 and GRK7 by PKA reduces the ability of GRK1 and GRK7 to phosphorylate rhodopsin in vitro. Since exposure to light causes a decrease in cAMP levels in rod cells, we propose that phosphorylation of GRK1 and GRK7 by PKA occurs in the dark, when cAMP levels in photoreceptor cells are elevated, and represents a novel mechanism for regulating the activities of these kinases
Growth of (110) Diamond using pure Dicarbon
We use a density-functional based tight-binding method to study diamond
growth steps by depositing dicarbon species onto a hydrogen-free diamond (110)
surface. Subsequent C_2 molecules are deposited on an initially clean surface,
in the vicinity of a growing adsorbate cluster, and finally, near vacancies
just before completion of a full new monolayer. The preferred growth stages
arise from C_2n clusters in near ideal lattice positions forming zigzag chains
running along the [-110] direction parallel to the surface. The adsorption
energies are consistently exothermic by 8--10 eV per C_2, depending on the size
of the cluster. The deposition barriers for these processes are in the range of
0.0--0.6 eV. For deposition sites above C_2n clusters the adsorption energies
are smaller by 3 eV, but diffusion to more stable positions is feasible. We
also perform simulations of the diffusion of C_2 molecules on the surface in
the vicinity of existing adsorbate clusters using an augmented Lagrangian
penalty method. We find migration barriers in excess of 3 eV on the clean
surface, and 0.6--1.0 eV on top of graphene-like adsorbates. The barrier
heights and pathways indicate that the growth from gaseous dicarbons proceeds
either by direct adsorption onto clean sites or after migration on top of the
existing C_2n chains.Comment: 8 Pages, 7 figure
The McDonald Observatory Planet Search: New Long-Period Giant Planets, and Two Interacting Jupiters in the HD 155358 System
We present high-precision radial velocity (RV) observations of four
solar-type (F7-G5) stars - HD 79498, HD 155358, HD 197037, and HD 220773 -
taken as part of the McDonald Observatory Planet Search Program. For each of
these stars, we see evidence of Keplerian motion caused by the presence of one
or more gas giant planets in long-period orbits. We derive orbital parameters
for each system, and note the properties (composition, activity, etc.) of the
host stars. While we have previously announced the two-gas-giant HD 155358
system, we now report a shorter period for planet c. This new period is
consistent with the planets being trapped in mutual 2:1 mean-motion resonance.
We therefore perform an in-depth stability analysis, placing additional
constraints on the orbital parameters of the planets. These results demonstrate
the excellent long-term RV stability of the spectrometers on both the Harlan J.
Smith 2.7 m telescope and the Hobby-Eberly telescope.Comment: 38 pages, 10 figures, 6 tables. Accepted for publication in Ap
The Mass and Structure of the Pleiades Star Cluster from 2MASS
We present the results of a large scale search for new members of the
Pleiades star cluster using 2MASS near-infrared photometry and proper motions
derived from POSS plates digitized by the USNO PMM program. The search extends
to a 10 degree radius around the cluster, well beyond the presumed tidal
radius, to a limiting magnitude of R ~ 20, corresponding to ~ 0.07 M_sun at the
distance and age of the Pleiades. Multi-object spectroscopy for 528 candidates
verifies that the search was extremely effective at detecting cluster stars in
the 1 - 0.1 M_sun mass range using the distribution of H_alpha emission
strengths as an estimate of sample contamination by field stars.
When combined with previously identified, higher mass stars, this search
provides a sensitive measurement of the stellar mass function and dynamical
structure of the Pleiades. The degree of tidal elongation of the halo agrees
well with current N body simulation results. Tidal truncation affects masses
below ~ 1 M_sun. The cluster contains a total mass ~ 800 M_sun. Evidence for a
flatter mass function in the core than in the halo indicates the depletion of
stars in the core with mass less than ~ 0.5 M_sun, relative to stars with mass
\~1 - 0.5 M_sun, and implies a preference for very low mass objects to populate
the halo or escape. The overall mass function is best fitted with a lognormal
form that becomes flat at ~ 0.1 M_sun. Whether sufficient dynamical evaporation
has occurred to detectably flatten the initial mass function, via preferential
escape of very low mass stars and brown dwarfs, is undetermined, pending better
membership information for stars at large radial distances.Comment: 19 pages, 14 figures, 2 tables, accepted by AJ, to appear April 200
Hunting planets and observing disks with the JWST NIRCam coronagraph
The expected stable point spread function, wide field of view, and sensitivity of the NIRCam instrument on the James Webb Space Telescope (JWST) will allow a simple, classical Lyot coronagraph to detect warm Jovian-mass companions orbiting young stars within 150 pc as well as cool Jupiters around the nearest low-mass stars. The coronagraph can also be used to study protostellar and debris disks. At λ = 4.5 μm, where young planets are particularly bright relative to their stars, and at separations beyond ~0.5 arcseconds, the low space background gives JWST significant advantages over ground-based telescopes equipped with adaptive optics. We discuss the scientific capabilities of the NIRCam coronagraph, describe the technical features of the instrument, and present end-to-end simulations of coronagraphic observations of planets and circumstellar disks
Investigation of Hexavalent Chromium Flux to Groundwater at the 100-C-7:1 Excavation Site
Deep excavation of soil has been conducted at the 100-C-7 and 100-C-7:1 waste sites within the 100-BC Operable Unit at the Department of Energy (DOE) Hanford Site to remove hexavalent chromium (Cr(VI)) contamination with the excavations reaching to near the water table. Soil sampling showed that Cr(VI) contamination was still present at the bottom of the 100-C-7:1 excavation. In addition, Cr(VI) concentrations in a downgradient monitoring well have shown a transient spike of increased Cr(VI) concentration following initiation of excavation. Potentially, the increased Cr(VI) concentrations in the downgradient monitoring well are due to Cr(VI) from the excavation site. However, data were needed to evaluate this possibility and to quantify the overall impact of the 100-C-7:1 excavation site on groundwater. Data collected from a network of aquifer tubes installed across the floor of the 100-C-7:1 excavation and from temporary wells installed at the bottom of the entrance ramp to the excavation were used to evaluate Cr(VI) releases into the aquifer and to estimate local-scale hydraulic properties and groundwater flow velocity
First radial velocity results from the MINiature Exoplanet Radial Velocity Array (MINERVA)
The MINiature Exoplanet Radial Velocity Array (MINERVA) is a dedicated
observatory of four 0.7m robotic telescopes fiber-fed to a KiwiSpec
spectrograph. The MINERVA mission is to discover super-Earths in the habitable
zones of nearby stars. This can be accomplished with MINERVA's unique
combination of high precision and high cadence over long time periods. In this
work, we detail changes to the MINERVA facility that have occurred since our
previous paper. We then describe MINERVA's robotic control software, the
process by which we perform 1D spectral extraction, and our forward modeling
Doppler pipeline. In the process of improving our forward modeling procedure,
we found that our spectrograph's intrinsic instrumental profile is stable for
at least nine months. Because of that, we characterized our instrumental
profile with a time-independent, cubic spline function based on the profile in
the cross dispersion direction, with which we achieved a radial velocity
precision similar to using a conventional "sum-of-Gaussians" instrumental
profile: 1.8 m s over 1.5 months on the RV standard star HD 122064.
Therefore, we conclude that the instrumental profile need not be perfectly
accurate as long as it is stable. In addition, we observed 51 Peg and our
results are consistent with the literature, confirming our spectrograph and
Doppler pipeline are producing accurate and precise radial velocities.Comment: 22 pages, 9 figures, submitted to PASP, Peer-Reviewed and Accepte
- …