23,007 research outputs found
Jupiter - Friend or Foe? IV: The influence of orbital eccentricity and inclination
For many years, it was assumed that Jupiter prevented the Earth from being
subject to a punishing impact regime that would greatly hinder the development
of life. Here, we present the 4th in a series of studies investigating this
hypothesis. Previously, we examined the effect of Jupiter's mass on the impact
rate experienced by Earth. Here, we extend that approach to consider the
influence of Jupiter's orbital eccentricity and inclination on the impact rate.
We first consider scenarios in which Jupiter's orbital eccentricity was
somewhat higher and somewhat lower than that in our Solar System. We find that
Jupiter's orbital eccentricity plays a moderate role in determining the impact
flux at Earth, with more eccentric orbits resulting in a higher impact rate of
asteroids than for more circular orbits. This is particularly pronounced at
high "Jupiter" masses. For short-period comets, the same effect is clearly
apparent, albeit to a lesser degree. The flux of short-period comets impacting
the Earth is slightly higher for more eccentric Jovian orbits.
We also consider scenarios in which Jupiter's orbital inclination was greater
than that in our Solar System. Increasing Jupiter's orbital inclination greatly
increased the flux of asteroidal impactors. However, at the highest tested
inclination, the disruption to the Asteroid belt was so great that the belt
would be entirely depleted after an astronomically short period of time. In
such a system, the impact flux from asteroid bodies would therefore be very
low, after an initial period of intense bombardment. By contrast, the influence
of Jovian inclination on impacts from short-period comets was very small. A
slight reduction in the impact flux was noted for the moderate and high
inclination scenarios considered in this work - the results for inclinations of
five and twenty-five degrees were essentially identical.Comment: 5 figures, plus 12 as an appendi
Book Review: Companeras: Women, Art and Social Change in Latin America
Book review for Companeras: Women, Art, and Social Change in Latin America, Betty LaDuke, City Lights Books, San Francisco, 1985
(1173) Anchises - Thermophysical and Dynamical Studies of a Dynamically Unstable Jovian Trojan
We have performed detailed thermophysical and dynamical modelling of Jovian
Trojan (1173) Anchises. Our results reveal a most unusual object. By examining
observational data taken by IRAS, Akari and WISE between 11.5 and 60 microns,
along with variations in its optical lightcurve, we find Anchises is most
likely an elongated body, with an axes-ratio of ~1.4. This yields calculated
best-fit dimensions of 170x121x121km (an equivalent diameter of 136+18/-11km).
We find the observations are best fit by Anchises having a retrograde sense of
rotation, and an unusually high thermal inertia (25 to 100 Jm-2s-0.5K-1). The
geometric albedo is found to be 0.027 (+0.006/-0.007). Anchises therefore has
one of the highest published thermal inertias of any object larger than 100km
in diameter, at such large heliocentric distances, and is one of the lowest
albedo objects ever observed. More observations are needed to see if there is a
link between the very shallow phase curve, with almost no opposition effect,
and the derived thermal properties for this large Trojan asteroid. Our
dynamical investigation of Anchises' orbit has revealed it to be dynamically
unstable on timescales of hundreds of Myr, similar to the unstable Neptunian
Trojans 2001 QR322 and 2008 LC18. Unlike those objects, we find that Anchises'
dynamical stability is not a function of its initial orbital elements, the
result of the exceptional precision with which its orbit is known. This is the
first time that a Jovian Trojan has been shown to be dynamically unstable, and
adds weight to the idea that planetary Trojans represent a significant ongoing
contribution to the Centaur population, the parents of the short-period comets.
The observed instability does not rule out a primordial origin for Anchises,
but when taken in concert with the result of our thermophysical analysis,
suggest that it would be a fascinating target for future study.Comment: 5 figures, 3 tables, accepted for publication in Monthly Notices of
the Royal Astronomical Societ
Low frequency, low temperature properties of the spin-boson problem
Low temperature and low frequency properties of a spin-boson model are
investigated within a super operator and Liouville space formulation. The
leading contributions are identified with the help of projection operators
projecting onto the equilibrium state. The quantities of interest are expressed
in terms of weighted bath propagators and static linear and nonlinear
susceptibilities. In particular the generalized Shiba relation and Wilson ratio
are recovered.Comment: 11 pages Late
Drift, creep and pinning of a particle in a correlated random potential
The motion of a particle in a correlated random potential under the influence
of a driving force is investigated in mean field theory. The correlations of
the disorder are characterized by a short distance cutoff and a power law decay
with exponent at large distances. Depending on temperature and
, drift with finite mobility, creep or pinning is found. This is in
qualitative agreement with results in one dimension. This model is of interest
not only in view of the motion of particles or manifolds in random media, it
also improves the understanding of glassy non-equilibrium dynamics in mean
field models. The results, obtained by numerical integration and analytic
investigations of the various scaling regimes in this problem, are compared
with previous proposals regarding the long time properties of such systems and
with replica calculations.Comment: 17 pages LaTeX and 16 eps-figures in uuencoded file. Several
misprints are correcte
Optical-noise supression unit: A concept
Device is used with coherent optical-processing spatial-filtering computer. It is isexpensive to manufacture and is made from readily available standard components. Its alignment is not critical
A Detailed Investigation of the Proposed NN Serpentis Planetary System
The post-main sequence eclipsing binary NN Serpentis was recently announced
as the potential host of at least two massive planetary companions. In that
work, the authors put forward two potential architectures that fit the
observations of the eclipsing binary with almost identical precision. In this
work, we present the results of a dynamical investigation of the orbital
stability of both proposed system architectures, finding that they are only
stable for scenarios in which the planets are locked in mutual mean motion
resonance. In the discovery work, the authors artificially fixed the orbital
eccentricity of the more massive planet, NN Ser(AB) c, at 0. Here, we reanalyse
the observational data on NN Serpentis without this artificial constraint, and
derive a new orbital solution for the two proposed planets. We detail the
results of further dynamical simulations investigating the stability of our new
orbital solution, and find that allowing a small non-zero eccentricity for the
outer planet renders the system unstable. We conclude that, although the
original orbits proposed for the NN Serpentis planetary system prove
dynamically feasible, further observations of the system are vital in order to
better constrain the system's true architecture.Comment: Accepted for publication in Monthly Notices of the Royal Astronomical
Society; 5 figures, 2 table
Program Design Snapshot: State Buy-In Programs for Children
Outlines the features, impact, and possible limitations of programs that allow moderate-income families without access to affordable private health insurance to buy public coverage for their children. Includes suggestions for increasing enrollment
- …