402 research outputs found
The paracrinology of tubal ectopic pregnancy
As part of successful human reproduction, the Fallopian tube must provide a suitable environment for pre-implantation development of the embryo and for efficient transport of the embryo to the uterus for implantation. These functions are coordinated by paracrine interactions between tubal epithelial, smooth muscle and immune cells and the cells of the developing embryo. Alterations in these signals can lead to a tubal microenvironment encouraging of embryo implantation and to dysregulated tubal motility, ultimately resulting in inappropriate and early implantation of the embryo in the Fallopian tube. Here, we highlight novel and emerging concepts in tubal physiology and pathobiology, such as the induction of a receptive phenotype within the Fallopian tube, leading to ectopic implantation. Chlamydia trachomatis infection is a risk factor for tubal ectopic pregnancy. Activation of toll-like receptor 2 (TLR-2) in the Fallopian tube epithelium, by C. trachomatis has recently been demonstrated, leading to the dysregulation of factors involved in implantation and smooth muscle contractility, such as prokineticins (PROK), activin A and interleukin 1 (IL-1). The Fallopian tube has also recently been shown to harbour a unique population of immune cells, compared to the endometrium. In addition, the complement of immune cells in the Fallopian tube has been reported to be altered in Fallopian tube from women with ectopic pregnancy. There are increasing data suggesting that vascularisation of the Fallopian tube, by the embryo during ectopic pregnancy, differs from that initiated in the uterus during normal pregnancy. This too, is likely the result of paracrine signals between the embryo and the tubal microenvironment
Genetic analysis confirms a link between gastrointestinal disorders and endometriosis
Patients with endometriosis often report gastrointestinal symptoms in addition to those usually considered hallmarks of the disorder (pain and infertility). Yang et al.1 identify genetic risk factors that can contribute to a shared disease etiology, providing new opportunities for improvements in disease management.</p
Surgical treatment of fibroids for subfertility
BACKGROUND: Fibroids are the most common benign tumours of the female genital tract and are associated with numerous clinical problems including a possible negative impact on fertility. In women requesting preservation of fertility, fibroids can be surgically removed (myomectomy) by laparotomy, laparoscopically or hysteroscopically depending on the size, site and type of fibroid. Myomectomy is however a procedure that is not without risk and can result in serious complications. It is therefore essential to determine whether such a procedure can result in an improvement in fertility and, if so, to then determine the ideal surgical approach.OBJECTIVES: To examine the effect of myomectomy on fertility outcomes and to compare different surgical approaches.SEARCH METHODS: We searched the Cochrane Gynaecology and Fertility Group (CGFG) Specialised Register, CENTRAL, MEDLINE, Embase, PsycINFO, CINAHL, Epistemonikos database, World Health Organization (WHO) International Clinical Trials Registry Platform search portal, Database of Abstracts of Reviews of Effects (DARE), LILACS, conference abstracts on the ISI Web of Knowledge, OpenSigle for grey literature from Europe, and reference list of relevant papers. The final search was in February 2019.SELECTION CRITERIA: Randomised controlled trials (RCTs) examining the effect of myomectomy compared to no intervention or where different surgical approaches are compared regarding the effect on fertility outcomes in a group of infertile women suffering from uterine fibroids.DATA COLLECTION AND ANALYSIS: Data collection and analysis were conducted in accordance with the procedure suggested in the Cochrane Handbook for Systematic Reviews of Interventions.MAIN RESULTS: This review included four RCTs with 442 participants. The evidence was very low-quality with the main limitations being due to serious imprecision, inconsistency and indirectness. Myomectomy versus no intervention One study examined the effect of myomectomy compared to no intervention on reproductive outcomes. We are uncertain whether myomectomy improves clinical pregnancy rate for intramural (odds ratio (OR) 1.88, 95% confidence interval (CI) 0.57 to 6.14; 45 participants; one study; very low-quality evidence), submucous (OR 2.04, 95% CI 0.62 to 6.66; 52 participants; one study; very low-quality evidence), intramural/subserous (OR 2.00, 95% CI 0.40 to 10.09; 31 participants; one study; very low-quality evidence) or intramural/submucous fibroids (OR 3.24, 95% CI 0.72 to 14.57; 42 participants; one study; very low-quality evidence). Similarly, we are uncertain whether myomectomy reduces miscarriage rate for intramural fibroids (OR 1.33, 95% CI 0.26 to 6.78; 45 participants; one study; very low-quality evidence), submucous fibroids (OR 1.27, 95% CI 0.27 to 5.97; 52 participants; one study; very low-quality evidence), intramural/subserous fibroids (OR 0.80, 95% CI 0.10 to 6.54; 31 participants; one study; very low-quality evidence) or intramural/submucous fibroids (OR 2.00, 95% CI 0.32 to 12.33; 42 participants; one study; very low-quality evidence). This study did not report on live birth, preterm delivery, ongoing pregnancy or caesarean section rate. Laparoscopic myomectomy versus myomectomy by laparotomy or mini-laparotomy Two studies compared laparoscopic myomectomy to myomectomy at laparotomy or mini-laparotomy. We are uncertain whether laparoscopic myomectomy compared to laparotomy or mini-laparotomy improves live birth rate (OR 0.80, 95% CI 0.42 to 1.50; 177 participants; two studies; I2 = 0%; very low-quality evidence), preterm delivery rate (OR 0.70, 95% CI 0.11 to 4.29; participants = 177; two studies; I2 = 0%, very low-quality evidence), clinical pregnancy rate (OR 0.96, 95% CI 0.52 to 1.78; 177 participants; two studies; I2 = 0%, very low-quality evidence), ongoing pregnancy rate (OR 1.61, 95% CI 0.26 to 10.04; 115 participants; one study; very low-quality evidence), miscarriage rate (OR 1.25, 95% CI 0.40 to 3.89; participants = 177; two studies; I2 = 0%, very low-quality evidence), or caesarean section rate (OR 0.69, 95% CI 0.34 to 1.39; participants = 177; two studies; I2 = 21%, very low-quality evidence). Monopolar resectoscope versus bipolar resectoscope One study evaluated the use of two electrosurgical systems during hysteroscopic myomectomy. We are uncertain whether bipolar resectoscope use compared to monopolar resectoscope use improves live birth/ongoing pregnancy rate (OR 0.86, 95% CI 0.30 to 2.50; 68 participants; one study, very low-quality evidence), clinical pregnancy rate (OR 0.88, 95% CI 0.33 to 2.36; 68 participants; one study; very low-quality evidence), or miscarriage rate (OR 1.00, 95% CI 0.19 to 5.34; participants = 68; one study; very low-quality evidence). This study did not report on preterm delivery or caesarean section rate. AUTHORS' CONCLUSIONS: There is limited evidence to determine the role of myomectomy for infertility in women with fibroids as only one trial compared myomectomy with no myomectomy. If the decision is made to have a myomectomy, the current evidence does not indicate a superior method (laparoscopy, laparotomy or different electrosurgical systems) to improve rates of live birth, preterm delivery, clinical pregnancy, ongoing pregnancy, miscarriage, or caesarean section. Furthermore, the existing evidence needs to be viewed with caution due to the small number of events, minimal number of studies and very low-quality evidence.</p
Endometriosis: time to think differently (and together)
Endometriosis affects approximately 10% of people assigned
female at birth, an estimated 190 million women worldwide.
At an individual level, endometriosis can be asymptomatic, or
can cause a spectrum of chronic pain, fatigue, bowel and bladder
symptoms, depression, and other comorbidities, including
infertility. A challenge for clinicians, perhaps notably in general
practice, is that endometriosis is markedly heterogeneous, with
no predictable correlation between symptoms experienced
and the extent of endometriosis identified during diagnostic
laparoscopy or on imaging. Likewise, endometriosis-associated
pain can persist when visibly apparent endometriosis is treated.
Economically, the annual accumulated cost of endometriosis
is estimated to be £12.5 billion in the UK, including treatment,
health care, loss of productivity, and absence from work.
Endometriosis has significant potential adverse impacts on
an individual’s quality of life.
On average, sufferers lose up to
11 hours of work per week due to endometriosis symptoms,
a figure similar to chronic conditions such as type 2 diabetes,
Crohn’s disease, and rheumatoid arthritis
Symptom tracking in endometriosis using digital technologies: Knowns, unknowns, and future prospects
Endometriosis: improvements and challenges in diagnosis and symptom management
Endometriosis is a chronic disorder with debilitating symptoms that is difficult to diagnose and treat. Advances in imaging technologies and strategies for the management of symptoms are improving the quality of life of patients by reducing the time taken for diagnosis and offering a more balanced approach to therapy
- …