1,193 research outputs found
Epigenetic marks in the mature pollen of Quercus suber L. (Fagaceae)
We have analysed the distribution of epigenetic
marks for histone modifications at lysine residues H3 and
H4, and DNA methylation, in the nuclei of mature pollen
cells of the Angiosperm tree Quercus suber; a monoecious
wind pollinated species with a protandrous system, and a
long post-pollination period. The ultrasonic treatment
developed for the isolation of pollen nuclei proved to be a
fast and reliable method, preventing the interference of cell
wall autofluorescence in the in situ immunolabelling
assays. In contrast with previous studies on herbaceous
species with short progamic phases, our results are consistent
with a high level of silent (5-mC and H3K9me2)
epigenetic marks on chromatin of the generative nucleus,
and the prevalence of active marks (H3K9me3 and H4Kac)
in the vegetative nucleus. The findings are discussed in
terms of the pollination/fertilization timing strategy adopted
by this plant specie
Mathematical model of a telomerase transcriptional regulatory network developed by cell-based screening: analysis of inhibitor effects and telomerase expression mechanisms
Cancer cells depend on transcription of telomerase reverse transcriptase (TERT). Many transcription factors affect TERT, though regulation occurs in context of a broader network. Network effects on telomerase regulation have not been investigated, though deeper understanding of TERT transcription requires a systems view. However, control over individual interactions in complex networks is not easily achievable. Mathematical modelling provides an attractive approach for analysis of complex systems and some models may prove useful in systems pharmacology approaches to drug discovery. In this report, we used transfection screening to test interactions among 14 TERT regulatory transcription factors and their respective promoters in ovarian cancer cells. The results were used to generate a network model of TERT transcription and to implement a dynamic Boolean model whose steady states were analysed. Modelled effects of signal transduction inhibitors successfully predicted TERT repression by Src-family inhibitor SU6656 and lack of repression by ERK inhibitor FR180204, results confirmed by RT-QPCR analysis of endogenous TERT expression in treated cells. Modelled effects of GSK3 inhibitor 6-bromoindirubin-3′-oxime (BIO) predicted unstable TERT repression dependent on noise and expression of JUN, corresponding with observations from a previous study. MYC expression is critical in TERT activation in the model, consistent with its well known function in endogenous TERT regulation. Loss of MYC caused complete TERT suppression in our model, substantially rescued only by co-suppression of AR. Interestingly expression was easily rescued under modelled Ets-factor gain of function, as occurs in TERT promoter mutation. RNAi targeting AR, JUN, MXD1, SP3, or TP53, showed that AR suppression does rescue endogenous TERT expression following MYC knockdown in these cells and SP3 or TP53 siRNA also cause partial recovery. The model therefore successfully predicted several aspects of TERT regulation including previously unknown mechanisms. An extrapolation suggests that a dominant stimulatory system may programme TERT for transcriptional stability
The Effect of Diet and Opponent Size on Aggressive Interactions Involving Caribbean Crazy Ants (Nylanderia fulva)
Biotic interactions are often important in the establishment and spread of invasive species. In particular, competition
between introduced and native species can strongly influence the distribution and spread of exotic species and in some
cases competition among introduced species can be important. The Caribbean crazy ant, Nylanderia fulva, was recently
introduced to the Gulf Coast of Texas, and appears to be spreading inland. It has been hypothesized that competition with
the red imported fire ant, Solenopsis invicta, may be an important factor in the spread of crazy ants. We investigated the
potential of interspecific competition among these two introduced ants by measuring interspecific aggression between
Caribbean crazy ant workers and workers of Solenopsis invicta. Specifically, we examined the effect of body size and diet on
individual-level aggressive interactions among crazy ant workers and fire ants. We found that differences in diet did not alter
interactions between crazy ant workers from different nests, but carbohydrate level did play an important role in
antagonistic interactions with fire ants: crazy ants on low sugar diets were more aggressive and less likely to be killed in
aggressive encounters with fire ants. We found that large fire ants engaged in fewer fights with crazy ants than small fire
ants, but fire ant size affected neither fire ant nor crazy ant mortality. Overall, crazy ants experienced higher mortality than
fire ants after aggressive encounters. Our findings suggest that fire ant workers might outcompete crazy ant workers on an
individual level, providing some biotic resistance to crazy ant range expansion. However, this resistance may be overcome
by crazy ants that have a restricted sugar intake, which may occur when crazy ants are excluded from resources by fire ants
Three-Dimensional Object Registration Using Wavelet Features
Recent developments in shape-based modeling and data acquisition have brought three-dimensional models to the forefront of computer graphics and visualization research. New data acquisition methods are producing large numbers of models in a variety of fields. Three-dimensional registration (alignment) is key to the useful application of such models in areas from automated surface inspection to cancer detection and surgery. The algorithms developed in this research accomplish automatic registration of three-dimensional voxelized models. We employ features in a wavelet transform domain to accomplish registration. The features are extracted in a multi-resolutional format, thus delineating features at various scales for robust and rapid matching. Registration is achieved by using a voting scheme to select peaks in sets of rotation quaternions, then separately identifying translation. The method is robust to occlusion, clutter, and noise. The efficacy of the algorithm is demonstrated through examples from solid modeling and medical imaging applications
Calibration of photomultiplier arrays
A method is described that allows calibration and assessment of the linearity of response of an array of photomultiplier tubes. The method does not require knowledge of the photomultiplier single photoelectron response model and uses science data directly, thus eliminating the need for dedicated data sets. In this manner all photomultiplier working conditions (e.g. temperature, external fields, etc.) are exactly matched between calibration and science acquisitions. This is of particular importance in low background experiments such as ZEPLIN-III, where methods involving the use of external light sources for calibration are severely constrained
Genome of the Avirulent Human-Infective Trypanosome—Trypanosoma rangeli
Background: Trypanosoma rangeli is a hemoflagellate protozoan parasite infecting humans and other wild and domestic mammals across Central and South America. It does not cause human disease, but it can be mistaken for the etiologic agent of Chagas disease, Trypanosoma cruzi. We have sequenced the T. rangeli genome to provide new tools for elucidating the distinct and intriguing biology of this species and the key pathways related to interaction with its arthropod and mammalian hosts. Methodology/Principal Findings: The T. rangeli haploid genome is ,24 Mb in length, and is the smallest and least repetitive trypanosomatid genome sequenced thus far. This parasite genome has shorter subtelomeric sequences compared to those of T. cruzi and T. brucei; displays intraspecific karyotype variability and lacks minichromosomes. Of the predicted 7,613 protein coding sequences, functional annotations could be determined for 2,415, while 5,043 are hypothetical proteins, some with evidence of protein expression. 7,101 genes (93%) are shared with other trypanosomatids that infect humans. An ortholog of the dcl2 gene involved in the T. brucei RNAi pathway was found in T. rangeli, but the RNAi machinery is non-functional since the other genes in this pathway are pseudogenized. T. rangeli is highly susceptible to oxidative stress, a phenotype that may be explained by a smaller number of anti-oxidant defense enzymes and heatshock proteins. Conclusions/Significance: Phylogenetic comparison of nuclear and mitochondrial genes indicates that T. rangeli and T. cruzi are equidistant from T. brucei. In addition to revealing new aspects of trypanosome co-evolution within the vertebrate and invertebrate hosts, comparative genomic analysis with pathogenic trypanosomatids provides valuable new information that can be further explored with the aim of developing better diagnostic tools and/or therapeutic targets
Sanitation of blackwater via sequential wetland and electrochemical treatment
The discharge of untreated septage is a major health hazard in countries that lack sewer systems and centralized sewage treatment. Small-scale, point-source treatment units are needed for water treatment and disinfection due to the distributed nature of this discharge, i.e., from single households or community toilets. In this study, a high-rate-wetland coupled with an electrochemical system was developed and demonstrated to treat septage at full scale. The full-scale wetland on average removed 79 +/- 2% chemical oxygen demand (COD), 30 +/- 5% total Kjeldahl nitrogen (TKN), 58 +/- 4% total ammoniacal nitrogen (TAN), and 78 +/- 4% orthophosphate. Pathogens such as coliforms were not fully removed after passage through the wetland. Therefore, the wetland effluent was subsequently treated with an electrochemical cell with a cation exchange membrane where the effluent first passed through the anodic chamber. This lead to in situ chlorine or other oxidant production under acidifying conditions. Upon a residence time of at least 6 h of this anodic effluent in a buffer tank, the fluid was sent through the cathodic chamber where pH neutralization occurred. Overall, the combined system removed 89 +/- 1% COD, 36 +/- 5% TKN, 70 +/- 2% TAN, and 87 +/- 2% ortho-phosphate. An average 5-log unit reduction in coliform was observed. The energy input for the integrated system was on average 16 +/- 3 kWh/m(3), and 11 kWh/m(3) under optimal conditions. Further research is required to optimize the system in terms of stability and energy consumption
- …