278 research outputs found

    Poisson Algebra of Wilson Loops and Derivations of Free Algebras

    Full text link
    We describe a finite analogue of the Poisson algebra of Wilson loops in Yang-Mills theory. It is shown that this algebra arises in an apparently completely different context; as a Lie algebra of vector fields on a non-commutative space. This suggests that non-commutative geometry plays a fundamental role in the manifestly gauge invariant formulation of Yang-Mills theory. We also construct the deformation of the loop algebra induced by quantization, in the large N_c limit.Comment: 20 pages, no special macros necessar

    Generalized Integral Operators and Schwartz Kernel Theorem

    Get PDF
    In connection with the classical Schwartz kernel theorem, we show that in the framework of Colombeau generalized functions a large class of linear mappings admit integral kernels. To do this, we need to introduce news spaces of generalized functions with slow growth and the corresponding adapted linear mappings. Finally, we show that in some sense Schwartz' result is contained in our main theorem.Comment: 18 page

    Transient Anomaly Imaging in Visco-Elastic Media Obeying a Frequency Power-Law

    Full text link
    In this work, we consider the problem of reconstructing a small anomaly in a viscoelastic medium from wave-field measurements. We choose Szabo's model to describe the viscoelastic properties of the medium. Expressing the ideal elastic field without any viscous effect in terms of the measured field in a viscous medium, we generalize the imaging procedures, such as time reversal, Kirchhoff Imaging and Back propagation, for an ideal medium to detect an anomaly in a visco-elastic medium from wave-field measurements

    A new approach to hyperbolic inverse problems

    Full text link
    We present a modification of the BC-method in the inverse hyperbolic problems. The main novelty is the study of the restrictions of the solutions to the characteristic surfaces instead of the fixed time hyperplanes. The main result is that the time-dependent Dirichlet-to-Neumann operator prescribed on a part of the boundary uniquely determines the coefficients of the self-adjoint hyperbolic operator up to a diffeomorphism and a gauge transformation. In this paper we prove the crucial local step. The global step of the proof will be presented in the forthcoming paper.Comment: We corrected the proof of the main Lemma 2.1 by assuming that potentials A(x),V(x) are real value

    Reconstructing sparticle mass spectra using hadronic decays

    Get PDF
    Most sparticle decay cascades envisaged at the Large Hadron Collider (LHC) involve hadronic decays of intermediate particles. We use state-of-the art techniques based on the K⊥ jet algorithm to reconstruct the resulting hadronic final states for simulated LHC events in a number of benchmark supersymmetric scenarios. In particular, we show that a general method of selecting preferentially boosted massive particles such as W±, Z0 or Higgs bosons decaying to jets, using sub-jets found by the K⊥ algorithm, suppresses QCD backgrounds and thereby enhances the observability of signals that would otherwise be indistinct. Consequently, measurements of the supersymmetric mass spectrum at the per-cent level can be obtained from cascades including the hadronic decays of such massive intermediate bosons

    A variational principle for actions on symmetric symplectic spaces

    Full text link
    We present a definition of generating functions of canonical relations, which are real functions on symmetric symplectic spaces, discussing some conditions for the presence of caustics. We show how the actions compose by a neat geometrical formula and are connected to the hamiltonians via a geometrically simple variational principle which determines the classical trajectories, discussing the temporal evolution of such ``extended hamiltonians'' in terms of Hamilton-Jacobi-type equations. Simplest spaces are treated explicitly.Comment: 28 pages. Edited english translation of first author's PhD thesis (2000

    Asymptotic analysis of the EPRL four-simplex amplitude

    Full text link
    The semiclassical limit of a 4-simplex amplitude for a spin foam quantum gravity model with an Immirzi parameter is studied. If the boundary state represents a non-degenerate 4-simplex geometry, the asymptotic formula contains the Regge action for general relativity. A canonical choice of phase for the boundary state is introduced and is shown to be necessary to obtain the results.Comment: v2: improved presentation, typos corrected, refs added; results unchange

    Quantization of the Riemann Zeta-Function and Cosmology

    Get PDF
    Quantization of the Riemann zeta-function is proposed. We treat the Riemann zeta-function as a symbol of a pseudodifferential operator and study the corresponding classical and quantum field theories. This approach is motivated by the theory of p-adic strings and by recent works on stringy cosmological models. We show that the Lagrangian for the zeta-function field is equivalent to the sum of the Klein-Gordon Lagrangians with masses defined by the zeros of the Riemann zeta-function. Quantization of the mathematics of Fermat-Wiles and the Langlands program is indicated. The Beilinson conjectures on the values of L-functions of motives are interpreted as dealing with the cosmological constant problem. Possible cosmological applications of the zeta-function field theory are discussed.Comment: 14 pages, corrected typos, references and comments adde

    Unitarity and Holography in Gravitational Physics

    Full text link
    Because the gravitational Hamiltonian is a pure boundary term on-shell, asymptotic gravitational fields store information in a manner not possible in local field theories. This fact has consequences for both perturbative and non-perturbative quantum gravity. In perturbation theory about an asymptotically flat collapsing black hole, the algebra generated by asymptotic fields on future null infinity within any neighborhood of spacelike infinity contains a complete set of observables. Assuming that the same algebra remains complete at the non-perturbative quantum level, we argue that either 1) the S-matrix is unitary or 2) the dynamics in the region near timelike, null, and spacelike infinity is not described by perturbative quantum gravity about flat space. We also consider perturbation theory about a collapsing asymptotically anti-de Sitter (AdS) black hole, where we show that the algebra of boundary observables within any neighborhood of any boundary Cauchy surface is similarly complete. Whether or not this algebra continues to be complete non-perturbatively, the assumption that the Hamiltonian remains a boundary term implies that information available at the AdS boundary at any one time t_1 remains present at this boundary at any other time t_2.Comment: 13 pages; appendix added on controlling failures of the geometric optics approximatio

    Decaying states of perturbed wave equations

    Get PDF
    We study the solutions of perturbed wave equations that represent free wave motion outside some ball. When there are no trapped rays, it is shown that every solution whose total energy decays to zero must be smooth. This extends results of Rauch to the even-dimensional case and to systems having more than one sound speed. In these results, obstacles are not considered. We show that, even allowing obstacles, waves with compact spatial support cannot decay, assuming a unique continuation hypothesis. An example with obstacle is given where nonsmooth, compactly supported, decaying waves exist.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/21896/1/0000303.pd
    corecore