2,847 research outputs found

    Monopole Excitation to Cluster States

    Get PDF
    We discuss strength of monopole excitation of the ground state to cluster states in light nuclei. We clarify that the monopole excitation to cluster states is in general strong as to be comparable with the single particle strength and shares an appreciable portion of the sum rule value in spite of large difference of the structure between the cluster state and the shell-model-like ground state. We argue that the essential reasons of the large strength are twofold. One is the fact that the clustering degree of freedom is possessed even by simple shell model wave functions. The detailed feature of this fact is described by the so-called Bayman-Bohr theorem which tells us that SU(3) shell model wave function is equivalent to cluster model wave function. The other is the ground state correlation induced by the activation of the cluster degrees of freedom described by the Bayman-Bohr theorem. We demonstrate, by deriving analytical expressions of monopole matrix elements, that the order of magnitude of the monopole strength is governed by the first reason, while the second reason plays a sufficient role in reproducing the data up to the factor of magnitude of the monopole strength. Our explanation is made by analysing three examples which are the monopole excitations to the 02+0^+_2 and 03+0^+_3 states in 16^{16}O and the one to the 02+0^+_2 state in 12^{12}C. The present results imply that the measurement of strong monopole transitions or excitations is in general very useful for the study of cluster states.Comment: 11 pages, 1 figure: revised versio

    Aneurysm of the distal posterior inferior cerebellar artery originating from extracranial fenestrated vertebral artery

    Get PDF
    ArticleJOURNAL OF CLINICAL NEUROSCIENCE. 14(3): 297-297 (2007)journal articl

    Electron wave functions in beta-decay formulas revisited (II): Completion including recoil-order and induced currents

    Full text link
    We present complete formulas of the allowed and first-forbidden transitions of the nuclear beta decay taking into account the recoil-order and induced currents up to the next-to-leading order (NLO). The longitudinal part of the vector current is cleared away by the use of the conservation of the vector current for the multipole operators of the natural-parity transitions, which makes the effect of the meson exchange current for the vector current as small as possible. The formula is transparent enough to be applied to various beta-decay processes. As a numerical demonstration, we apply our formulas to the beta decay of a neutron-rich nucleus 160^{160}Sn. We find that the NLO corrections amount to 10--20\% of the total decay rate, whereas the induced currents alter the rate at most 5\%.Comment: 25 pages, 2 figure

    Intraoperative angiography through the occipital artery and muscular branch of the vertebral artery: technical note

    Get PDF
    ArticleSURGICAL NEUROLOGY. 70(6):645-648(2008)journal articl

    Microscopic study of 4-alpha-particle condensation with proper treatment of resonances

    Full text link
    The 4-alpha condensate state for ^{16}O is discussed with the THSR (Tohsaki-Horiuchi-Schuck-Roepke) wave function which has alpha-particle condensate character. Taking into account a proper treatment of resonances, it is found that the 4-alpha THSR wave function yields a fourth 0^+ state in the continuum above the 4-alpha-breakup threshold in addition to the three 0^+ states obtained in a previous analysis. It is shown that this fourth 0^+ ((0_4^+)_{THSR}) state has an analogous structure to the Hoyle state, since it has a very dilute density and a large component of alpha+^{12}C(0_2^+) configuration. Furthermore, single-alpha motions are extracted from the microscopic 16-nucleon wave function, and the condensate fraction and momentum distribution of alpha particles are quantitatively discussed. It is found that for the (0_4^+)_{THSR} state a large alpha-particle occupation probability concentrates on a single-alpha 0S orbit and the alpha-particle momentum distribution has a delta-function-like peak at zero momentum, both indicating that the state has a strong 4-alpha condensate character. It is argued that the (0_4^+)_{THSR} state is the counterpart of the 0_6^+ state which was obtained as the 4-alpha condensate state in the previous 4-alpha OCM (Orthogonality Condition Model) calculation, and therefore is likely to correspond to the 0_6^+ state observed at 15.1 MeV.Comment: 16 pages, 15 figures, submitted to PRC
    • …
    corecore