15 research outputs found

    Surface engineering using Kumada catalyst-transfer polycondensation (KCTP): preparation and structuring of poly(3-hexylthiophene)-based graft copolymer brushes.

    No full text
    Poly(4-vinylpyridine)-block-poly(4-iodo-styrene), P4VP-b-PS(I), block copolymers obtained by iodination of readily available P4VP-b-PS block copolymers strongly adhere to variety of polar substrates including Si wafers, glasses, or metal oxide surfaces by a polar P4VP block, forming polymer brushes of moderately stretched PS(I) chains. Kumada catalyst-transfer polycondensation (KCTP) from the P4VP-b-PS(I) brushes results into planar brushes of the graft copolymer in which relatively short ( approximately 10 nm) poly(3-hexylthiophene), P3HT, grafts emanate from the surface-tethered PS(I) chains. Grafting of the P3HT leads to significant stretching of the PS(I) backbone as a result of increased excluded volume interactions. Specific adsorption of the P4VP block to polar surfaces was utilized in this work to pattern the P4VP(25)-b-PS(I)(350) brush. The microscopically structured P4VP(25)-b-PS(I)(350) brush was converted into the respectively patterned P4VP-PS(I)-g-P3HT one using KCTP. We also demonstrated that KCTP from functional block copolymers is an attractive option for nanostructuring with polymer brushes. P4VP(75)-b-PS(I)(313) micelles obtained in selective solvent for the PS(I) block form a quasi-ordered hexagonal array on Si wafer. The P4VP(75)-b-PS(I)(313) monolayer preserves the characteristic quasi-regular arrangement of the micelles even after extensive rinsing with various solvents. Although the grafting of P3HT from the nanopatterned P4VP(75)-b-PS(I)(313) brush destroys the initial order, the particulate morphology in the resulting film is preserved. We believe that the developed method to structured brushes of conductive polymers can be further exploited in novel stimuli-responsive materials, optoectronic devices, and sensors

    Hollow colloidosomes prepared using accelerated solvent evaporation

    Get PDF
    [Image: see text] We demonstrate a new, scalable, simple, and generally applicable two-step method to prepare hollow colloidosomes. First, a high volume fraction oil-in-water emulsion was prepared. The oil phase consisted of CH(2)Cl(2) containing a hydrophobic structural polymer, such as polycaprolactone (PCL) or polystyrene (PS), which was fed into the water phase. The water phase contained poly(vinylalcohol), poly(N-isopropylacrylamide), or a range of cationic graft copolymer surfactants. The emulsion was rotary evaporated to rapidly remove CH(2)Cl(2). This caused precipitation of PCL or PS particles which became kinetically trapped at the periphery of the droplets and formed the shell of the hollow colloidosomes. Interestingly, the PCL colloidosomes were birefringent. The colloidosome yield increased and the polydispersity decreased when the preparation scale was increased. One example colloidosome system consisted of hollow PCL colloidosomes stabilized by PVA. This system should have potential biomaterial applications due to the known biocompatibility of PCL and PVA

    Impact of pNIPAM Microgel Size on Its Ability To Stabilize Pickering Emulsions

    No full text
    We study the influence of the particle size on the ability of poly(N-isoprolylacrylamide) microgels to stabilize direct oil-in-water Pickering emulsions. The microgel size is varied from 250 to 760 nm, the cross-linking density being kept constant. The emulsion properties strongly depend on the stabilizer size: increasing the particle size induces an evolution from dispersed drops and fluid emulsions toward strongly adhesive drops and flocculated emulsions. In order to get insight into this dependency, we study how particles adsorb at the interface and we determine the extent of their deformation. We propose a correlation between microgel ability to deform and emulsion macroscopic behavior. Indeed, as the microgels size increases, their internal structure becomes more heterogeneous and so does the polymeric interfacial layer they form. The loss of a uniform dense layer favors bridging between neighboring drops, leading to flocculated and therefore less handleable emulsions
    corecore