2,061 research outputs found

    Graph-theory induced gravity and strongly-degenerate fermions in a self-consistent Einstein universe

    Full text link
    We study UV-finite theory of induced gravity. We use scalar fields, Dirac fields and vector fields as matter fields whose one-loop effects induce the gravitational action. To obtain the mass spectrum which satisfies the UV-finiteness condition, we use a graph-based construction of mass matrices. The existence of a self-consistent static solution for an Einstein universe is shown in the presence of degenerate fermion.Comment: 16pages, 1figur

    Maxwell-Chern-Simons vortices in a CPT-odd Lorentz-violating Higgs Electrodynamics

    Get PDF
    We have studied BPS vortices in a CPT-odd and Lorentz-violating Maxwell-Chern-Simons-Higgs (MCSH) electrodynamics attained from the dimensional reduction of the Carroll-Field-Jackiw-Higgs model. The Lorentz-violating parameter induces a pronounced behavior at origin (for the magnetic/electric fields and energy density) which is absent in the MCSH vortices. For some combination of the Lorentz-violating coefficients there always exist a sufficiently large winding number n0n_{0} such that for all % |n|\geq |n_{0}| the magnetic field flips its signal, yielding two well defined regions with opposite magnetic flux. However, the total magnetic flux remains quantized and proportional to the winding number.Comment: Revtex style, 8 page

    Infrared Observations of the Helix Planetary Nebula

    Get PDF
    We have mapped the Helix (NGC 7293) planetary nebula (PN) with the IRAC instrument on the Spitzer Space Telescope. The Helix is one of the closest bright PNs and therefore provides an opportunity to resolve the small-scale structure in the nebula. The emission from this PN in the 5.8 and 8 μm IRAC bands is dominated by the pure rotational lines of molecular hydrogen, with a smaller contribution from forbidden line emission such as [Ar III] in the ionized region. The IRAC images resolve the "cometary knots," which have been previously studied in this PN. The "tails" of the knots and the radial rays extending into the outer regions of the PN are seen in emission in the IRAC bands. IRS spectra on the main ring and the emission in the IRAC bands are consistent with shock-excited H_2 models, with a small (~10%) component from photodissociation regions. In the northeast arc, the H_2 emission is located in a shell outside the Hα emission

    Modelling of Dynamic Strain Aging with a Dislocation-Based Isotropic Hardening Model and Investigation of Orthogonal Loading

    Get PDF
    Based on experimental results, a dislocation material model describing the dynamic strain aging\ud effect at different temperatures is presented. One and two stage loading tests were performed in\ud order to investigate the influence of the loading direction as well as the temperature influence due\ud to the hardening mechanism. Bergström’s theory of work hardening was used as a basis for the\ud model development regarding the thermal isotropic behavior as well as the Chaboche model to\ud describe the kinematic hardening. Both models were implemented in an in-house FE-Code in\ud order to simulate the real processes. The present paper discusses two hardening mechanisms,\ud where the first part deals with the pure isotropic hardening including dynamic strain aging and the\ud second part involves the influence of the loading direction regarding combined (isotropic and\ud kinematic) hardening behavior

    Optical and Mid-Infrared Observations of the Planetary Nebula NGC 6781

    Full text link
    Although the planetary nebula NGC 6781 appears to possess an elliptical morphology, its kinematic and emission characteristics are in many ways unusual, and it is possible that it may represent a bipolar source oriented close to the line of sight. We shall present deep imaging of this nebula in [O III], Ha and [N II], and using broad-band (F555W and F814W) filters. These were taken with the 2.56-m Nordic Optical Telescope and Hubble Space Telescope. This is combined with mid-infrared (MIR) imaging and spectroscopy acquired with the Spitzer Space Telescope (Spitzer), and near-infrared spectroscopy deriving from the Infrared Space Observatory (ISO). These reveal details of the complex [N II] structure associated with extended shell emission, perhaps associated with highly inclined bipolar lobes. We also note the presence of narrow absorbing filaments and clumps projected against the surface of the envelope, components which may be responsible for much of the molecular emission. We point out that such clumps may be responsible for complex source structure in the MIR, and give rise to asymmetries in emission along the major axis of the source.Comment: 12 pages, 10 figures, Accepted for publication in MNRAS. 32 pages in arXi

    Expanded Very Large Array Observations of the Nebula Around G79.29+0.46

    Get PDF
    We have observed the radio nebula surrounding the Galactic luminous blue variable candidate G79.29+0.46 with the Expanded Very Large Array (EVLA) at 6 cm. These new radio observations allow a morphological comparison between the radio emission, which traces the ionized gas component, and the mid-IR emission, a tracer of the dust component. The InfraRed Array Camera (8 μm) and the Multiband Imaging Photometer for Spitzer (24 μm and 70 μm) images have been reprocessed and compared with the EVLA map. We confirm the presence of a second shell at 24 μm and also provide evidence for its detection at 70 μm. The differences between the spatial morphology of the radio and mid-IR maps indicate the existence of two dust populations, the cooler one emitting mostly at longer wavelengths. Analysis of the two dusty, nested shells have provided us with an estimate of the characteristic timescales for shell ejection, providing important constraints for stellar evolutionary models. Finer details of the ionized gas distribution can be appreciated thanks to the improved quality of the new 6 cm image, most notably the highly structured texture of the nebula. Evidence of interaction between the nebula and the surrounding interstellar medium can be seen in the radio map, including brighter features that delineate regions where the shell structure is locally modified. In particular, the brighter filaments in the southwest region appear to frame the shocked southwestern clump reported from CO observations

    Generalized self-dual Maxwell-Chern-Simons-Higgs model

    Full text link
    We present a consistent BPS framework for a generalized Maxwell-Chern-Simons-Higgs model. The overall model, including its self-dual potential, depends on three different functions, h(|{\phi}|,N), w(|{\phi}|) and G(|{\phi}|), which are functions of the scalar fields only. The BPS energy is proportional to the magnetic flux when w(|{\phi}|) and G(|{\phi}|) are related to each other by a differential constraint. We present an explicit non-standard model and its topologically non-trivial static configurations, which are described by the usual radially symmetric profile. Finally, we note that the non-standard results behave in a similar way as their standard counterparts, as expected, reinforcing the consistence of the overall construction.Comment: 6 pages, 5 figure

    Spitzer 24 um Images of Planetary Nebulae

    Full text link
    Spitzer MIPS 24 um images were obtained for 36 Galactic planetary nebulae (PNe) whose central stars are hot white dwarfs (WDs) or pre-WDs with effective temperatures of ~100,000 K or higher. Diffuse 24 um emission is detected in 28 of these PNe. The eight non-detections are angularly large PNe with very low H-alpha surface brightnesses. We find three types of correspondence between the 24 um emission and H-alpha line emission of these PNe: six show 24 um emission more extended than H-alpha emission, nine have a similar extent at 24 um and H-alpha, and 13 show diffuse 24 um emission near the center of the H-alpha shell. The sizes and surface brightnesses of these three groups of PNe and the non-detections suggest an evolutionary sequence, with the youngest ones being brightest and the most evolved ones undetected. The 24 um band emission from these PNe is attributed to [O IV] 25.9 um and [Ne V] 24.3 um line emission and dust continuum emission, but the relative contributions of these three components depend on the temperature of the central star and the distribution of gas and dust in the nebula.Comment: 24 pages, 8 figures, to appear in the Astronomical Journal, September issue. Relace previous file; two references are added and typos are correcte
    corecore