167 research outputs found
Twin-peak quasiperiodic oscillations as an internal resonance
Two inter-related peaks occur in high-frequency power spectra of X-ray
lightcurves of several black-hole candidates. We further explore the idea that
a non-linear resonance mechanism, operating in strong-gravity regime, is
responsible for these quasi-periodic oscillations (QPOs). By extending the
multiple-scales analysis of Rebusco, we construct two-dimensional phase-space
sections, which enable us to identify different topologies governing the system
and to follow evolutionary tracks of the twin peaks. This suggests that the
original (Abramowicz and Kluzniak) parametric-resonance scheme can be viewed as
an ingenuous account of the QPOs model with an internal resonance. We show an
example of internal resonance in a system with up to two critical points, and
we describe a general technique that permits to treat other cases in a
systematical manner. A separatrix divides the phase-space sections into regions
of different topology: inside the libration region the evolutionary tracks
bring the observed twin-peak frequencies to an exact rational ratio, whereas in
the circulation region the observed frequencies remain off resonance. Our
scheme predicts the power should cyclically be exchanged between the two
oscillations. Likewise the high-frequency QPOs in neutron-star binaries, also
in black-hole sources one expects, as a general property of the non-linear
model, that slight detuning pushes the twin-peak frequencies out of sharp
resonance.Comment: Accepted for publication in A&A; 11 pages, 6 figure
Diffusion of Mn interstitials in (Ga,Mn)As epitaxial layers
Magnetic properties of thin (Ga,Mn)As layers improve during annealing by
out-diffusion of interstitial Mn ions to a free surface. Out-diffused Mn atoms
participate in the growth of a Mn-rich surface layer and a saturation of this
layer causes an inhibition of the out-diffusion. We combine high-resolution
x-ray diffraction with x-ray absorption spectroscopy and a numerical solution
of the diffusion problem for the study of the out-diffusion of Mn interstitials
during a sequence of annealing steps. Our data demonstrate that the
out-diffusion of the interstitials is substantially affected by the internal
electric field caused by an inhomogeneous distribution of charges in the
(Ga,Mn)As layer.Comment: 11 pages, 5 figure
Instrumentation for study of nanomaterials in NPI REZ (New laboratory for material study in Nuclear Physics Institute in REZ)
Nano-sized materials become irreplaceable component of a number of devices for every aspect of human life. The development of new materials and deepening of the current knowledge require a set of specialized techniques-deposition methods for preparation/modification of the materials and analytical tools for proper understanding of their properties. A thoroughly equipped research centers become the requirement for the advance and development not only in nano-sized field. The Center of Accelerators and Nuclear Analytical Methods (CANAM) in the Nuclear Physics Institute (NPI) comprises a unique set of techniques for the synthesis or modification of nanostructured materials and systems, and their characterization using ion beam, neutron beam and microscopy imaging techniques. The methods are used for investigation of a broad range of nano-sized materials and structures based on metal oxides, nitrides, carbides, carbon-based materials (polymers, fullerenes, graphenes, etc.) and nano-laminate composites (MAX phases). These materials can be prepared at NPI using ion beam sputtering, physical vapor deposition and molecular beam epitaxy. Based on the deposition method and parameters, the samples can be tuned to possess specific properties, e.g., composition, thickness (nm-μm), surface roughness, optical and electrical properties, etc. Various nuclear analytical methods are applied for the sample characterization. RBS, RBS-channeling, PIXE, PIGE, micro-beam analyses and Transmission Spectroscopy are accomplished at the Tandetron 4130MC accelerator, and additionally the Neutron Depth Profiling (NDP) and Prompt Gamma Neutron Activation (PGNA) analyses are performed at an external neutron beam from the LVR-15 research reactor. The multimode AFM facility provides further surface related information, magnetic/electrical properties with nano-metric precision, nano-indentation, etc
Production and characterization of micro-size pores for ion track etching applications
For many years the applications of ion track etch materials have increased considerably, like charged particles detection, molecular identification with nanopores, ion track filters, magnetic studies with nanowires and so on. Over the materials generally used as track detector, the Poly-Allyl-Diglycol Carbonate (PADC), offers many advantages, like its nearly 100 % detection efficiency for charged particle, a high resistance to harsh environment, the lowest detection threshold, a high abrasion resistance and a low production costs. All of these properties have made it particularly attractive material, even if due to its brittleness, obtaining a thin film (less than 500 μm) is still a challenge. In this work, PADC foils have been exposed to a-particles emitted by a thin radioactive source of 241Am and to C ions from the Tandetron 4130 MC accelerator. The latent tracks generated in the polymer have been developed using a standard etching procedure in 6.25 NaOH solution. The dependence of the ion tracks' geometry on the ion beam energy and fluence has been evaluated combining the information obtained through a semiautomatic computer script that selects the etched ion tracks according to their diameter and mean grey value and nanometric resolution images by atomic force microscopy
Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation
A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems
Near-infrared polarimetry setting constraints on the orbiting spot model for Sgr A* flares
Context: Recent near-infrared polarization measurements of SgrA* show that
its emission is significantly polarized during flares and consists of a non- or
weakly polarized main flare with highly polarized sub-flares. The flare
activity suggests a quasi-periodicity of ~20 minutes in agreement with previous
observations. Aims: By simultaneous fitting of the lightcurve fluctuations and
the time-variable polarization angle, we address the question of whether these
changes are consistent with a simple hot spot/ring model, in which the
interplay of relativistic effects plays the major role, or whether some more
complex dependency of the intrinsic emissivity is required. Methods: We discuss
the significance of the 20min peak in the periodogram of a flare from 2003. We
consider all general relativistic effects that imprint on the polarization
degree and angle and fit the recent polarimetric data, assuming that the
synchrotron mechanism is responsible for the intrinsic polarization and
considering two different magnetic field configurations. Results: Within the
quality of the available data, we think that the model of a single spot in
addition to an underlying ring is favoured. In this model the broad
near-infrared flares of Sgr A* are due to a sound wave that travels around the
MBH once while the sub-flares, superimposed on the broad flare, are due to
transiently heated and accelerated electrons which can be modeled as a plasma
blob. Within this model it turns out that a strong statement about the spin
parameter is difficult to achieve, while the inclination can be constrained to
values > 35 deg on a 3sigma level.Comment: accepted by A&A for publicatio
Co-encapsulation of human serum albumin and superparamagnetic iron oxide in PLGA nanoparticles: Part I. Effect of process variables on the mean size
PLGA (poly d,l-lactic-co-glycolic acid) nanoparticles (NPs) encapsulating magnetite nanoparticles (MNPs) along with a model drug human serum albumin (HSA) were prepared by double emulsion solvent evaporation method. This Part I will focus on size and size distribution of prepared NPs, whereas encapsulation efficiency will be discussed in Part II. It was found that mean hydrodynamic particle size was influenced by five important process variables. To explore their effects, a five-factorial, three-level experimental design and statistical analysis were carried out using STATISTICA® software. Effect of process variables on the mean size of nanoparticles was investigated and finally conditions to minimize size of NPs were proposed. GAMS™/MINOS software was used for optimization. The mean hydrodynamic size of nanoparticles ranged from 115 to 329 nm depending on the process conditions. Smallest possible mean particle size can be achieved by using low polymer concentration and high dispersion energy (enough sonication time) along with small aqueous/organic volume ratio
Unambiguous Formalism for Higher-Order Lagrangian Field Theories
The aim of this paper is to propose an unambiguous intrinsic formalism for
higher-order field theories which avoids the arbitrariness in the
generalization of the conventional description of field theories, which implies
the existence of different Cartan forms and Legendre transformations. We
propose a differential-geometric setting for the dynamics of a higher-order
field theory, based on the Skinner and Rusk formalism for mechanics. This
approach incorporates aspects of both, the Lagrangian and the Hamiltonian
description, since the field equations are formulated using the Lagrangian on a
higher-order jet bundle and the canonical multisymplectic form on its dual. As
both of these objects are uniquely defined, the Skinner-Rusk approach has the
advantage that it does not suffer from the arbitrariness in conventional
descriptions. The result is that we obtain a unique and global intrinsic
version of the Euler-Lagrange equations for higher-order field theories.
Several examples illustrate our construction.Comment: 21 pages; 4 diagrams; (this version) corrected typos; moved
paragraphs; publishe
- …