4 research outputs found

    Prospects of Rice Husk Gasification for Power Generation in Bangladesh

    Get PDF
    Electricity is the basic requirement to promote socio-economic development. In recent years, Bangladesh is facing severe power crisis all over the country, but the rural areas are the most vulnerable. This acute electricity crisis along with the conventional fuel crunch is affecting every sector of the country and economy is being crippled. To reduce the dependency on fossil fuels, rice husk which are widely abundant agricultural waste from rice industry could play a vital role in this regards. Bangladesh is an agricultural country and produces huge quantity of rice every year. In the year 2011, the total rice production was around 50.63 million tones. Husk is the waste biomass produce during the rice processing, on average it accounts around 20% of the rice produced on weight basis (10.12 million tones). The potential of power generation from rice husk by gasification is around 310 MWe in Bangladesh. The power plant to be installed near the large rice mills `cluster area' in Dinajpur, Bogra, Naogaon, Chapainawabganj and Ishwardi with the surplus rice husk. This paper consolidates information from various studies on the availability of rice husk, its characterization and estimates possible power potential that can be realized

    Economic Evaluation of the PV Micro Utilities Installed by Grameen Shakti for Rural Electrification in Bangladesh

    Get PDF
    Sharing expensive technology can serve many users, even poor users. Grameen Shakti has developed a special programnamed PV micro utility to make it easier for those who cannot afford SHSs individually. Under this program, GrameenShakti allows people to share the cost and the subsequent benefit of using a SHS. In this study, operation and financialmechanism, analysis of cost of systems, tariff system, simple payback period, NPV and IRR of the micro utility systemshave been analyzed to show the financial viability of PV MU from the PV MU owner’s perspective. Results suggest thatthese systems have simple payback period of around 4-6 years. The NPV of systems varied from 27,000 BDT to 144,000BDT. The levelized electricity cost of PV MU systems is 70 BDT (~0.86 $)/kWh in Bangladesh. The owner has to spendonly 7.50 BDT/day but can earn at least 30-40 BDT per day, and up to 130-200 BDT/day.Keywords - Rural Electrification, Solar PV, Grameen Shakti, Bangladesh, Economic Evaluation

    Fixed bed pyrolysis of date seed waste for liquid oil production

    Get PDF
    The conversion of biomass waste in the form of date seed into pyrolysis oil by fixed bed pyrolysis reactor has been taken into consideration in this study. A fixed bed pyrolysis has been designed and fabricated for obtaining liquid fuel from these date seeds. The major component of the system are fixed bed pyrolysis reactor, liquid condenser and liquid collector. The date seed in particle form is pyrolysed in an externally heated 7.6 cm diameter and 46 cm high fixed bed reactor with nitrogen as the carrier gas. The reactor is heated by means of a biomass source cylindrical heater from 4000C to 6000C. The products are oil, char and gas. The reactor bed temperature, running time and feed particle size are considered as process parameters. The parameters are found to influence the product yield significantly. A maximum liquid yield of 50 wt.% is obtained at a reactor bed temperature of 5000 C for a feed size volume of 0.11- 0.20 cm3 with a running time of 120 minutes. The pyrolysis oil obtained at this optimum process conditions are analyzed for some fuel properties and compared with some other biomass derived pyrolysis oils and also with conventional fuels. The oil is found to possess favorable flash point and reasonable density and viscosity. The higher calorific value is found to be 28.636 MJ/kg which is significantly higher than other biomass derived pyrolysis oils

    Socio-economic and environmental impacts of battery driven auto rickshaw at Rajshahi city in Bangladesh

    Get PDF
    This paper describes the socio-economic and environmental impacts of battery driven Auto Rickshaw at Rajshahi city in Bangladesh. Unemployment problem is one of the major problems in Bangladesh. The number of unemployed people in Bangladesh is 7 lacks. Auto Rickshaw reduces this unemployment problem near about 2%.In this thesis work various questions were asked to the Auto Rickshaw driver in the different point in the Rajshahi city. Then those data were calculated to know their socio economic condition. The average number of passenger per Auto Rickshaw was determined at various places of Rajshahi city (Talaimari mor, Hadir mor, Alupotti, Shaheb bazar zero point, Shodor Hospital mor, Fire brigade mor, CNB mor, Lakshipur mor, Bondo gate, Bornali, Panir tank, Rail gate, Rail Station, Bhodrar mor, Adorsha School mor). Air pollution is a great threat for human health. One of the major causes of the air pollution is the emission from various vehicles, which are running by the burning of the fossil fuel in different internal combustion(IC) engines. All the data’s about emission from various power plants were collected from internet. Then the amounts of emission (CO2, NOX and PM) from different power plant were calculated in terms of kg/km. The energy required by the Auto Rickshaw per km was also calculated. Then the histogram of emission from different vehicles in terms of kg/km was drawn. By analyzing the data and chart, it was found that, battery driven Auto Rickshaw increases income, social status, comfort and decreases unemployment problems
    corecore