21 research outputs found
Elaboraci贸n de materiales docentes para la adquisici贸n y evaluaci贸n de competencias de tecnolog铆a medioambiental y desarrollo sostenible en Ingenier铆a Qu铆mica
Depto. de Ingenier铆a Qu铆mica y de MaterialesFac. de Ciencias Qu铆micasFALSEsubmitte
V铆deo impresi贸n 3D prisma T-IONO-4B
V铆deo-impresi贸n 3D prisma triangular T-IONO-4B. Adjunto de la Tesis Doctoral titulada: "Formulaci贸n de ionogeles e hidrogeles de celulosa procedente del fraccionamiento de la madera y su aplicaci贸n en la impresi贸n 3D" de Cynthia Hopson
Formulaci贸n de ionogeles e hidrogeles de celulosa procedente del fraccionamiento de la madera y su aplicaci贸n en la impresi贸n 3D
The search of new materials associated with the needs of both technological and environmental challenges has led to the growth of gel-type materials, whose functionalities cover a wide range of applications: electrochemical devices, biosensors, wound dressings, etc. Cellulose, a biopolymer widely used in the field of gels, is a good substitute for petroleum-derived polymers due to its biodegradability, renewability, and good mechanical properties. One of the main sources of cellulose is lignocellulosic biomass. Ionic liquids (ILs), which are organic salts formed by an inorganic anion and an organic cation whose melting point is below 100 潞C, have been and continue to be studied for cellulose dissolution. A gel-like material called ionogel is obtained from cellulose and IL solutions. Ionogels are being widely developed in the area of electrochemistry due to their thermal stability, high conductivity, and versatility (multiple anion-cation combinations). In addition, another material called hydrogel can be obtained from these ionogels, in which the dispersed or liquid phase becomes water instead of an IL, obtaining a material suitable for biomedical applications. In recent years, 3D printing of gels has gained increasing attention and is driving important innovations in many areas, due to the viscoelastic properties of gels and their manufacturing versatility, because of the different types of inks that can be formulated (light-curable inks, bioinks, etc.). 3D printing is the process of manufacturing an object layer by layer from a computer-designed 3D file that makes it possible to manufacture, in this case, customized gels. The formulation of ionogels and cellulose hydrogels is an important advance in the development of materials for 3D printing, more beneficial to the environment by using a biopolymer...La b煤squeda de nuevos materiales asociada a las necesidades de los retos planteados tanto en el 谩mbito tecnol贸gico como en el medioambiental ha propiciado el crecimiento de los materiales tipo gel, cuyas funcionalidades cubren un amplio abanico de aplicaciones en dispositivos electroqu铆micos, biosensores, ap贸sitos, etc. La celulosa, un biopol铆mero ampliamente utilizado en el campo de los geles, es un buen sustituto de los pol铆meros derivados del petr贸leo debido a su biodegradabilidad, renovabilidad y buenas propiedades mec谩nicas. Una de las principales fuentes de celulosa es la biomasa lignocelul贸sica. Para la disoluci贸n de la celulosa se han estudiado y se siguen estudiando los l铆quidos i贸nicos (LIs), que son sales org谩nicas formadas por un ani贸n inorg谩nico y un cati贸n org谩nico cuyo punto de fusi贸n es inferior a 100 潞C. A partir de las disoluciones de celulosa y LI se obtiene un material tipo gel denominado ionogel. Estos materiales se est谩n desarrollando ampliamente en el 谩rea de la electroqu铆mica debido a su estabilidad t茅rmica, alta conductividad y versatilidad (m煤ltiples combinaciones ani贸n-cati贸n). Adem谩s, a partir de dichos ionogeles se puede obtener otro material denominado hidrogel, en el cual la fase l铆quida pasa a ser agua en lugar de un LI, consiguiendo un material apto para aplicaciones biom茅dicas...Fac. de Ciencias Qu铆micasTRUEunpu
V铆deo impresi贸n 3D prisma T-ORG-6.
V铆deo impresi贸n 3D prisma T-ORG-6. Adjunto de la Tesis Doctoral titulada: "Formulaci贸n de ionogeles e hidrogeles de celulosa procedente del fraccionamiento de la madera y su aplicaci贸n en la impresi贸n 3D" de Cynthia Hopson
V铆deo impresi贸n 3D malla T-IONO-4B
V铆deo donde se muestra la impresi贸n 3D de una malla impresa a partir de la tinta T-IONO-4B. Asociado a la Tesis Doctoral titulada "Formulaci贸n de ionogeles e hidrogeles de celulosa procedente del fraccionamiento de la madera y su aplicaci贸n en la impresi贸n 3D"
V铆deo-I-KRAFT-4 reutilizaci贸n_Fundir
V铆deo muestra I-KRAFT-4 reutilizaci贸n. Adjunto de la Tesis Doctoral titulada: "Formulaci贸n de ionogeles e hidrogeles de celulosa procedente del fraccionamiento de la madera y su aplicaci贸n en la impresi贸n 3D" de Cynthia Hopson
Recommended from our members
Purification and characterization of a native lytic polysaccharide monooxygenase from Thermoascus aurantiacus.
Lytic polysaccharide monooxygenases (LPMOs) have emerged as key proteins for depolymerization of cellulose. These copper-containing enzymes oxidize C-1 and/or C-4 bonds in cellulose, promoting increased hydrolysis of the oxidized cellulose chains. The LPMO from Thermoascus aurantiacus, a thermophilic ascomycete fungus, has been extensively studied and has served as a model LPMO. A method was developed to purify the LPMO from culture filtrates of T. aurantiacus along with its native cellobiohydrolase and endoglucanase. The activity of the purified LPMO was measured with a colorimetric assay that established the Topt of the native LPMO at 60 掳C. Purification of the components of the T. aurantiacus cellulase mixture also enabled quantification of the amounts of cellobiohydrolase, endoglucanase and LPMO present in the T. aurantiacus culture filtrate, establishing that the LPMO was the most abundant protein in the culture supernatants. The importance of the LPMO to activity of the mixture was demonstrated by saccharifications with Avicel and acid-pretreated corn stover
CAZymes from the thermophilic fungus Thermoascus aurantiacus are induced by C5 and C6 sugars
Background
Filamentous fungi are excellent lignocellulose degraders, which they achieve through producing carbohydrate active enzymes (CAZymes). CAZyme production is highly orchestrated and gene expression analysis has greatly expanded understanding of this important biotechnological process. The thermophilic fungus Thermoascus aurantiacus secretes highly active thermostable enzymes that enable saccharifications at higher temperatures; however, the genome-wide measurements of gene expression in response to CAZyme induction are not understood.
Results
A fed-batch system with plant biomass-derived sugars d-xylose, l-arabinose and cellobiose established that these sugars induce CAZyme expression in T. aurantiacus. The C5 sugars induced both cellulases and hemicellulases, while cellobiose specifically induced cellulases. A minimal medium formulation was developed to enable gene expression studies of T. aurantiacus with these inducers. It was found that d-xylose and l-arabinose strongly induced a wide variety of CAZymes, auxiliary activity (AA) enzymes and carbohydrate esterases (CEs), while cellobiose facilitated lower expression of mostly cellulase genes. Furthermore, putative orthologues of different unfolded protein response genes were up-regulated during the C5 sugar feeding together with genes in the C5 sugar assimilation pathways.
Conclusion
This work has identified two additional CAZyme inducers for T. aurantiacus, l-arabinose and cellobiose, along with d-xylose. A combination of biochemical assays and RNA-seq measurements established that C5 sugars induce a suite of cellulases and hemicellulases, providing paths to produce broad spectrum thermotolerant enzymatic mixtures.ISSN:1754-683
CAZymes from the thermophilic fungus Thermoascus aurantiacus are induced by C5 and C6 sugars
Background: Filamentous fungi are excellent lignocellulose degraders, which they achieve through producing carbohydrate active enzymes (CAZymes). CAZyme production is highly orchestrated and gene expression analysis has greatly expanded understanding of this important biotechnological process. The thermophilic fungus Thermoascus aurantiacus secretes highly active thermostable enzymes that enable saccharifications at higher temperatures; however, the genome-wide measurements of gene expression in response to CAZyme induction are not understood. Results: A fed-batch system with plant biomass-derived sugars D-xylose, L-arabinose and cellobiose established that these sugars induce CAZyme expression in T. aurantiacus. The C5 sugars induced both cellulases and hemicellulases, while cellobiose specifically induced cellulases. A minimal medium formulation was developed to enable gene expression studies of T. aurantiacus with these inducers. It was found that d-xylose and L-arabinose strongly induced a wide variety of CAZymes, auxiliary activity (AA) enzymes and carbohydrate esterases (CEs), while cellobiose facilitated lower expression of mostly cellulase genes. Furthermore, putative orthologues of different unfolded protein response genes were up-regulated during the C5 sugar feeding together with genes in the C5 sugar assimilation pathways. Conclusion: This work has identified two additional CAZyme inducers for T. aurantiacus, L-arabinose and cellobiose, along with D-xylose. A combination of biochemical assays and RNA-seq measurements established that C5 sugars induce a suite of cellulases and hemicellulases, providing paths to produce broad spectrum thermotolerant enzymatic mixtures