4 research outputs found

    Gross morphology and histology of the alimentary tract of the convict cichlid Amatitlania nigrofasciata

    No full text
    The primary objectives of this study were to document the macroscopic and histological structure of the alimentary tract (AT) of the convict cichlid Amatitlania nigrofasciata, because there are no data available for this omnivorous freshwater fish of the family Cichlidae. The morphology of the AT of A. nigrofasciata resembles that of related species. While having morphological criteria of the AT typical of most omnivorous fishes, such as a blind sac stomach and medium length intestine, A. nigrofasciata also has some structural peculiarities: the oesophagus is lined by a uniform stratified squamous epithelial layer with interspersed goblet cells along its entire length. Additionally, it has well-developed layers of the tunica muscularis including muscle fibre bundles that ascend into its mucosal folds. Occasionally, taste buds are present. In the transitional area between oesophagus and stomach, a prominent torus-like closure device is present. The mucosa of the stomach cannot be divided into different regions according to mucosal and morphological properties. The simple pattern of intestinal loops of A. nigrofasciata has few variations, irrespective of sex, mass and length of the individual fish. The first segment of the intestine is characterized by the largest mucososerosal ratio and the most complex mucosal surface architecture. A distinction of midgut and hindgut was not possible in A. nigrofasciata due to lack of defining structural components as described for other fish species

    Human and equine endothelial cells in a live cell imaging scratch assay in vitro

    No full text
    BACKGROUND: Human and equine patients are known to frequently develop vascular complications, particularly thrombosis both in veins and arteries as well as in the microvasculature. OBJECTIVE: The aim of the present study was to investigate and compare the angiogenic response of human and equine endothelial cells to lesions in an in vitro scratch assay. METHODS: Endothelial cells from human umbilical vein (HUVEC), abdominal aorta (HAAEC) and dermal microvasculature (HDMEC) as well as equine carotid artery (EACEC) and jugular vein (EVJEC) were cultured and an elongated defect was created (scratch or "wound"). Cultures were monitored over a period of 90 hours in a life cell imaging microscope. RESULTS: In the human endothelial cell cultures, there was a uniform and continuous migration of the cells from the scratch fringe into the denuded area, which was closed after 17 (HUVEC), 15 (HAAEC) and 26 (HDMEC) hours. In the equine endothelial cell cultures, a complete closure of the induced defect occurred after 17 (EVJEC) and 35 (EACEC) hours. CONCLUSIONS: In the equine arterial cells, the delay in closure of the denuded area seems to be the results of a disoriented and uncoordinated migration of endothelial tip cells resulting in slow re-endothelialization

    Human and equine endothelial cells in a live cell imaging scratch assay in vitro

    No full text
    BACKGROUND:Human and equine patients are known to frequently develop vascular complications, particularly thrombosis both in veins and arteries as well as in the microvasculature. OBJECTIVE:The aim of the present study was to investigate and compare the angiogenic response of human and equine endothelial cells to lesions in an in vitro scratch assay. METHODS:Endothelial cells from human umbilical vein (HUVEC), abdominal aorta (HAAEC) and dermal microvasculature (HDMEC) as well as equine carotid artery (EACEC) and jugular vein (EVJEC) were cultured and an elongated defect was created (scratch or “wound”). Cultures were monitored over a period of 90 hours in a live cell imaging microscope. RESULTS:In the human endothelial cell cultures, there was a uniform and continuous migration of the cells from the scratch fringe into the denuded area, which was closed after 17 (HUVEC), 15 (HAAEC) and 26 (HDMEC) hours. In the equine endothelial cell cultures, a complete closure of the induced defect occurred after 17 (EVJEC) and 35 (EACEC) hours. CONCLUSIONS:In the equine arterial cells, the delay in closure of the denuded area seems to be the results of a disoriented and uncoordinated migration of endothelial tip cells resulting in slow re-endothelialization
    corecore