23 research outputs found

    Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae

    Get PDF
    Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites

    Transgenic Expression of the Anti-parasitic Factor TEP1 in the Malaria Mosquito Anopheles gambiae

    Get PDF
    Mosquitoes genetically engineered to be resistant to Plasmodium parasites represent a promising novel approach in the fight against malaria. The insect immune system itself is a source of anti-parasitic genes potentially exploitable for transgenic designs. The Anopheles gambiae thioester containing protein 1 (TEP1) is a potent anti-parasitic protein. TEP1 is secreted and circulates in the mosquito hemolymph, where its activated cleaved form binds and eliminates malaria parasites. Here we investigated whether TEP1 can be used to create malaria resistant mosquitoes. Using a GFP reporter transgene, we determined that the fat body is the main site of TEP1 expression. We generated transgenic mosquitoes that express TEP1r, a potent refractory allele of TEP1, in the fat body and examined the activity of the transgenic protein in wild-type or TEP1 mutant genetic backgrounds. Transgenic TEP1r rescued loss-of-function mutations, but did not increase parasite resistance in the presence of a wild-type susceptible allele. Consistent with previous reports, TEP1 protein expressed from the transgene in the fat body was taken up by hemocytes upon a challenge with injected bacteria. Furthermore, although maturation of transgenic TEP1 into the cleaved form was impaired in one of the TEP1 mutant lines, it was still sufficient to reduce parasite numbers and induce parasite melanization. We also report here the first use of Transcription Activator Like Effectors (TALEs) in Anopheles gambiae to stimulate expression of endogenous TEP1. We found that artificial elevation of TEP1 expression remains moderate in vivo and that enhancement of endogenous TEP1 expression did not result in increased resistance to Plasmodium. Taken together, our results reveal the difficulty of artificially influencing TEP1-mediated Plasmodium resistance, and contribute to further our understanding of the molecular mechanisms underlying mosquito resistance to Plasmodium parasites

    Uncovering the invisible: Mono-ADP-ribosylation moved into the spotlight

    Full text link
    Adenosine diphosphate (ADP)-ribosylation is a nicotinamide adenine dinucleotide (NAD+)-dependent post-translational modification that is found on proteins as well as on nucleic acids. While ARTD1/PARP1-mediated poly-ADP-ribosylation has extensively been studied in the past 60 years, comparably little is known about the physiological function of mono-ADP-ribosylation and the enzymes involved in its turnover. Promising technological advances have enabled the development of innovative tools to detect NAD+ and NAD+/NADH (H for hydrogen) ratios as well as ADP-ribosylation. These tools have significantly enhanced our current understanding of how intracellular NAD dynamics contribute to the regulation of ADP-ribosylation as well as to how mono-ADP-ribosylation integrates into various cellular processes. Here, we discuss the recent technological advances, as well as associated new biological findings and concepts

    Regulation of Glucose Metabolism by NAD+^{+} and ADP-Ribosylation

    Get PDF
    Cells constantly adapt their metabolic pathways to meet their energy needs and respond to nutrient availability. During the last two decades, it has become increasingly clear that NAD+^{+}, a coenzyme in redox reactions, also mediates several ubiquitous cell signaling processes. Protein ADP-ribosylation is a post-translational modification that uses NAD+^{+} as a substrate and is best known as part of the genotoxic stress response. However, there is increasing evidence that NAD+^{+}-dependent ADP-ribosylation regulates other cellular processes, including metabolic pathways. In this review, we will describe the compartmentalized regulation of NAD+^{+} biosynthesis, consumption, and regeneration with a particular focus on the role of ADP-ribosylation in the regulation of glucose metabolism in different cellular compartments

    Investigation of Mitochondrial Via Immunofluorescence

    Full text link

    ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G1/S progression in T24 bladder carcinoma cells

    Full text link
    <p>ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G<sub>1</sub>/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of <i>cyclin E</i> during cell cycle re-entry and G<sub>1</sub>/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27<sup>Kip<a href="#cit0001" target="_blank">1</a></sup> protein levels increased in G<sub>1</sub> upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G<sub>1</sub>/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G<sub>1</sub>/S progression via <i>cyclin E</i> expression and p27<sup>Kip<a href="#cit0001" target="_blank">1</a></sup> stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.</p

    ARTD1 regulates cyclin E expression and consequently cell-cycle re-entry and G<sub>1</sub>/S progression in T24 bladder carcinoma cells

    No full text
    <p>ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G<sub>1</sub>/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of <i>cyclin E</i> during cell cycle re-entry and G<sub>1</sub>/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27<sup>Kip<a href="#cit0001" target="_blank">1</a></sup> protein levels increased in G<sub>1</sub> upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G<sub>1</sub>/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G<sub>1</sub>/S progression via <i>cyclin E</i> expression and p27<sup>Kip<a href="#cit0001" target="_blank">1</a></sup> stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.</p

    Validation of extracellular ligand–receptor interactions by Flow-TriCEPS

    Get PDF
    Abstract Objective The advent of ligand-based receptor capture methodologies, allows the identification of unknown receptor candidates for orphan extracellular ligands. However, further target validation can be tedious, laborious and time-consuming. Here, we present a methodology that provides a fast and cost-efficient alternative for candidate target verification on living cells. Results In the described methodology a ligand of interest (e.g. transferrin, epidermal growth factor or insulin) was conjugated to a linker (TriCEPS) that carries a biotin. To confirm ligand/receptor interactions, the ligand–TriCEPS conjugates were first added onto living cells and cells were subsequently labeled with a streptavidin-fluorophore and analyzed by flow cytometry (thus referred as Flow-TriCEPS). Flow-TriCEPS was also used to validate identified receptor candidates when combined with a siRNA knock down approach (i.e. reduction of expression levels). This approach is versatile as it can be applied for different classes of ligands (proteins, peptides, antibodies) and different cell lines. Moreover, the method is time-efficient since it takes advantage of the large variety of commercially available (and certified) siRNAs

    Mitochondrial NAD+ Controls Nuclear ARTD1-Induced ADP-Ribosylation

    Full text link
    In addition to its role as an electron transporter, mitochondrial nicotinamide adenine dinucleotide (NAD+) is an important co-factor for enzymatic reactions, including ADP-ribosylation. Although mitochondria harbor the most intra-cellular NAD+, mitochondrial ADP-ribosylation remains poorly understood. Here we provide evidence for mitochondrial ADP-ribosylation, which was identified using various methodologies including immunofluorescence, western blot, and mass spectrometry. We show that mitochondrial ADP-ribosylation reversibly increases in response to respiratory chain inhibition. Conversely, H2O2-induced oxidative stress reciprocally induces nuclear and reduces mitochondrial ADP-ribosylation. Elevated mitochondrial ADP-ribosylation, in turn, dampens H2O2-triggered nuclear ADP-ribosylation and increases MMS-induced ARTD1 chromatin retention. Interestingly, co-treatment of cells with the mitochondrial uncoupler FCCP decreases PARP inhibitor efficacy. Together, our results suggest that mitochondrial ADP-ribosylation is a dynamic cellular process that impacts nuclear ADP-ribosylation and provide evidence for a NAD+-mediated mitochondrial-nuclear crosstalk
    corecore