46 research outputs found

    Deficiency and Also Transgenic Overexpression of Timp-3 Both Lead to Compromised Bone Mass and Architecture In Vivo

    Get PDF
    Tissue inhibitor of metalloproteinases-3 (TIMP-3) regulates extracellular matrix via its inhibition of matrix metalloproteinases and membrane-bound sheddases. Timp-3 is expressed at multiple sites of extensive tissue remodelling. This extends to bone where its role, however, remains largely unresolved. In this study, we have used Micro-CT to assess bone mass and architecture, histological and histochemical evaluation to characterise the skeletal phenotype of Timp-3 KO mice and have complemented this by also examining similar indices in mice harbouring a Timp-3 transgene driven via a Col-2a-driven promoter to specifically target overexpression to chondrocytes. Our data show that Timp-3 deficiency compromises tibial bone mass and structure in both cortical and trabecular compartments, with corresponding increases in osteoclasts. Transgenic overexpression also generates defects in tibial structure predominantly in the cortical bone along the entire shaft without significant increases in osteoclasts. These alterations in cortical mass significantly compromise predicted tibial load-bearing resistance to torsion in both genotypes. Neither Timp-3 KO nor transgenic mouse growth plates are significantly affected. The impact of Timp-3 deficiency and of transgenic overexpression extends to produce modification in craniofacial bones of both endochondral and intramembranous origins. These data indicate that the levels of Timp-3 are crucial in the attainment of functionally-appropriate bone mass and architecture and that this arises from chondrogenic and osteogenic lineages

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Mortality and pulmonary complications in patients undergoing surgery with perioperative SARS-CoV-2 infection: an international cohort study

    Get PDF
    Background: The impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on postoperative recovery needs to be understood to inform clinical decision making during and after the COVID-19 pandemic. This study reports 30-day mortality and pulmonary complication rates in patients with perioperative SARS-CoV-2 infection. Methods: This international, multicentre, cohort study at 235 hospitals in 24 countries included all patients undergoing surgery who had SARS-CoV-2 infection confirmed within 7 days before or 30 days after surgery. The primary outcome measure was 30-day postoperative mortality and was assessed in all enrolled patients. The main secondary outcome measure was pulmonary complications, defined as pneumonia, acute respiratory distress syndrome, or unexpected postoperative ventilation. Findings: This analysis includes 1128 patients who had surgery between Jan 1 and March 31, 2020, of whom 835 (74·0%) had emergency surgery and 280 (24·8%) had elective surgery. SARS-CoV-2 infection was confirmed preoperatively in 294 (26·1%) patients. 30-day mortality was 23·8% (268 of 1128). Pulmonary complications occurred in 577 (51·2%) of 1128 patients; 30-day mortality in these patients was 38·0% (219 of 577), accounting for 81·7% (219 of 268) of all deaths. In adjusted analyses, 30-day mortality was associated with male sex (odds ratio 1·75 [95% CI 1·28–2·40], p\textless0·0001), age 70 years or older versus younger than 70 years (2·30 [1·65–3·22], p\textless0·0001), American Society of Anesthesiologists grades 3–5 versus grades 1–2 (2·35 [1·57–3·53], p\textless0·0001), malignant versus benign or obstetric diagnosis (1·55 [1·01–2·39], p=0·046), emergency versus elective surgery (1·67 [1·06–2·63], p=0·026), and major versus minor surgery (1·52 [1·01–2·31], p=0·047). Interpretation: Postoperative pulmonary complications occur in half of patients with perioperative SARS-CoV-2 infection and are associated with high mortality. Thresholds for surgery during the COVID-19 pandemic should be higher than during normal practice, particularly in men aged 70 years and older. Consideration should be given for postponing non-urgent procedures and promoting non-operative treatment to delay or avoid the need for surgery. Funding: National Institute for Health Research (NIHR), Association of Coloproctology of Great Britain and Ireland, Bowel and Cancer Research, Bowel Disease Research Foundation, Association of Upper Gastrointestinal Surgeons, British Association of Surgical Oncology, British Gynaecological Cancer Society, European Society of Coloproctology, NIHR Academy, Sarcoma UK, Vascular Society for Great Britain and Ireland, and Yorkshire Cancer Research

    A Multicenter, Randomized, Placebo-Controlled Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in Patients With Rheumatoid Arthritis

    Get PDF
    OBJECTIVE: Rheumatoid arthritis (RA) is associated with increased cardiovascular event (CVE) risk. The impact of statins in RA is not established. We assessed whether atorvastatin is superior to placebo for the primary prevention of CVEs in RA patients. METHODS: A randomized, double‐blind, placebo‐controlled trial was designed to detect a 32% CVE risk reduction based on an estimated 1.6% per annum event rate with 80% power at P 50 years or with a disease duration of >10 years who did not have clinical atherosclerosis, diabetes, or myopathy received atorvastatin 40 mg daily or matching placebo. The primary end point was a composite of cardiovascular death, myocardial infarction, stroke, transient ischemic attack, or any arterial revascularization. Secondary and tertiary end points included plasma lipids and safety. RESULTS: A total of 3,002 patients (mean age 61 years; 74% female) were followed up for a median of 2.51 years (interquartile range [IQR] 1.90, 3.49 years) (7,827 patient‐years). The study was terminated early due to a lower than expected event rate (0.70% per annum). Of the 1,504 patients receiving atorvastatin, 24 (1.6%) experienced a primary end point, compared with 36 (2.4%) of the 1,498 receiving placebo (hazard ratio [HR] 0.66 [95% confidence interval (95% CI) 0.39, 1.11]; P = 0.115 and adjusted HR 0.60 [95% CI 0.32, 1.15]; P = 0.127). At trial end, patients receiving atorvastatin had a mean ± SD low‐density lipoprotein (LDL) cholesterol level 0.77 ± 0.04 mmoles/liter lower than those receiving placebo (P < 0.0001). C‐reactive protein level was also significantly lower in the atorvastatin group than the placebo group (median 2.59 mg/liter [IQR 0.94, 6.08] versus 3.60 mg/liter [IQR 1.47, 7.49]; P < 0.0001). CVE risk reduction per mmole/liter reduction in LDL cholesterol was 42% (95% CI −14%, 70%). The rates of adverse events in the atorvastatin group (n = 298 [19.8%]) and placebo group (n = 292 [19.5%]) were similar. CONCLUSION: Atorvastatin 40 mg daily is safe and results in a significantly greater reduction of LDL cholesterol level than placebo in patients with RA. The 34% CVE risk reduction is consistent with the Cholesterol Treatment Trialists’ Collaboration meta‐analysis of statin effects in other populations

    A Multicenter, Randomized, Placebo‐Controlled Trial of Atorvastatin for the Primary Prevention of Cardiovascular Events in Patients With Rheumatoid Arthritis

    Get PDF
    Objective: Rheumatoid arthritis (RA) is associated with increased cardiovascular event (CVE) risk. The impact of statins in RA is not established. We assessed whether atorvastatin is superior to placebo for the primary prevention of CVEs in RA patients. Methods: A randomized, double‐blind, placebo‐controlled trial was designed to detect a 32% CVE risk reduction based on an estimated 1.6% per annum event rate with 80% power at P 50 years or with a disease duration of >10 years who did not have clinical atherosclerosis, diabetes, or myopathy received atorvastatin 40 mg daily or matching placebo. The primary end point was a composite of cardiovascular death, myocardial infarction, stroke, transient ischemic attack, or any arterial revascularization. Secondary and tertiary end points included plasma lipids and safety. Results: A total of 3,002 patients (mean age 61 years; 74% female) were followed up for a median of 2.51 years (interquartile range [IQR] 1.90, 3.49 years) (7,827 patient‐years). The study was terminated early due to a lower than expected event rate (0.70% per annum). Of the 1,504 patients receiving atorvastatin, 24 (1.6%) experienced a primary end point, compared with 36 (2.4%) of the 1,498 receiving placebo (hazard ratio [HR] 0.66 [95% confidence interval (95% CI) 0.39, 1.11]; P = 0.115 and adjusted HR 0.60 [95% CI 0.32, 1.15]; P = 0.127). At trial end, patients receiving atorvastatin had a mean ± SD low‐density lipoprotein (LDL) cholesterol level 0.77 ± 0.04 mmoles/liter lower than those receiving placebo (P < 0.0001). C‐reactive protein level was also significantly lower in the atorvastatin group than the placebo group (median 2.59 mg/liter [IQR 0.94, 6.08] versus 3.60 mg/liter [IQR 1.47, 7.49]; P < 0.0001). CVE risk reduction per mmole/liter reduction in LDL cholesterol was 42% (95% CI −14%, 70%). The rates of adverse events in the atorvastatin group (n = 298 [19.8%]) and placebo group (n = 292 [19.5%]) were similar. Conclusion: Atorvastatin 40 mg daily is safe and results in a significantly greater reduction of LDL cholesterol level than placebo in patients with RA. The 34% CVE risk reduction is consistent with the Cholesterol Treatment Trialists’ Collaboration meta‐analysis of statin effects in other populations

    Origin of temperature-dependent threshold current in p-doped and undoped in(Ga)As quantum dot lasers

    Full text link
    We examine the temperature dependence of threshold current in self-assembled quantum dot lasers focusing on the factors that produce an increase of threshold current at high temperatures. Nonradiative recombination makes up the majority of threshold current and the temperature dependence of threshold current at higher temperatures. We measure radiative efficiencies at low current density for an undoped structure of 18% and 9% at 300 and 360 K, respectively. These values decrease at higher currents and are even lower for p-doped structures. In undoped structures, the incomplete population of the ground state due to the thermal distribution of holes limits the gain, and this is exacerbated at higher temperatures. In p-doped structures, the gain is increased, but the degree of improvement over an undoped sample is reduced at elevated temperatures. The increasing nonradiative current density at high temperatures is a result of both driving the device harder to maintain the threshold gain requirement (~50% of the increase for an uncoated, 2-mm long laser) and due to an increase in nonradiative recombination at fixed injection. The latter is similar in both p-doped and undoped structures with the most likely origin being the population of higher lying dot and wetting layer states
    corecore